题面

传送门:https://www.luogu.org/problemnew/show/P1006


Solution

挺显然但需要一定理解的网络(应该是那么叫吧)DP

首先有一个显然但重要的结论要发现:从左上走到右下再从右下走回左上=从左上走两次到右下

那么接下来可以考虑:

设f[i][j][k][l]为第一次走到了(i,j)第二次走到了(k,l) 在路径不交错为前提下的能取到的最大友好值

转移方程也挺好写的

考虑这种情况能从哪里转移过来就好(i,j)可以从(i-1,j)或(i,j-1)转移过来,(k,l)可以从(k-1,l)或(k-1,l-1)转移过来

排列组合一下,总共4种可能性,取个最大值再加上a[i][j]和a[k][l]就好

当然(i==k and j==l) 即两个点重合的情况直接continue,因为f 的意义是之前的不重合,当前的也不能重合

预处理整个f设为0就好

时间复杂度O(n^4) n=50,显然能过

接下来我们可以考虑一个优化

因为我们两次从左上到右下是一起走的

就有这么一个推论: i+j = k+l (画个图就好,挺好发现的)

既然这两个相等,也就意味着我们可以通过总和与i,k推算出j,l

然后我们的方程就可以优化成这样的:

f[i][j][k]的意思为:走了i步,第一次走到了第j行,第二次走到了第k行

它们的橫坐标分别为:i-j+2,i-k+2

转移同理

这样,时间复杂度就可以优化为O(n^3),相较之前的可以称为巨大的飞跃

然后就OjbK了


Code

//Luogu P1006 传纸条
//May,4th,2018
//网格DP
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
long long read()
{
long long x=0,f=1; char c=getchar();
while(!isdigit(c)){if(c=='-') f=-1;c=getchar();}
while(isdigit(c)){x=x*10+c-'0';c=getchar();}
return x*f;
}
const int N=50+5;
int f[2*N][N][N],a[N][N],n,m;
int main()
{
m=read(),n=read();
for(int i=1;i<=m;i++)
for(int j=1;j<=n;j++)
a[i][j]=read(); int MAX=n+m;
for(int i=1;i<=MAX;i++)
for(int j=1;j<=m;j++)
for(int k=1;k<=m;k++)
{
int X1=i-j+2,Y1=j,X2=i-k+2,Y2=k;
if((X1==X2 and Y1==Y2)==false and X1>0 and X2>0 and X1<=n and X2<=n)
{
f[i][j][k]=max(f[i][j][k],f[i-1][j][k]);
f[i][j][k]=max(f[i][j][k],f[i-1][j-1][k]);
f[i][j][k]=max(f[i][j][k],f[i-1][j][k-1]);
f[i][j][k]=max(f[i][j][k],f[i-1][j-1][k-1]);
f[i][j][k]+=a[j][X1]+a[k][X2];
}
} printf("%d",max(f[m+n-3][m][m-1],f[m+n-3][m-1][m]));
return 0;
}

C++(正解)


后记

当时想为什么不会交叉的时候考虑了挺久的,这种类型的网格DP还是得多学习一个,我啊,太naive了

我太弱了

[Luogu P1006]传纸条 (网格DP)的更多相关文章

  1. P1006 传纸条[棋盘DP]

    题目来源:洛谷 题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接 ...

  2. 【暑假集训】HZOI2019 Luogu P1006 传纸条 二三四维解法

    写三次丢失两次,我谔谔,以后再不在博客园先保存我就去死 题目内容 洛谷链接 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学被安排坐成一个\(m\)行.\(n\ ...

  3. 洛谷P1006 传纸条【dp】

    题目:https://www.luogu.org/problemnew/show/P1006 题意: 给定一个m*n的矩阵,从(1,1)向下或向右走到(m,n)之后向上或向左走回(1,1),要求路径中 ...

  4. LuoGu P1006 传纸条

    题目传送门 这题嘛...方格取数和这题一样一样的 只不过这题是从左上到右下再回去罢了(来回一趟和来两趟有区别么?没有,那么这题和上题用一样的转移和状态就行了 没什么好说的,说一下我的错误好了: 人家图 ...

  5. 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏

    P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...

  6. P1006 传纸条(二维、三维dp)

    P1006 传纸条 输入输出样例 输入 #1 复制 3 3 0 3 9 2 8 5 5 7 0 输出 #1 复制 34 说明/提示 [限制] 对于 30% 的数据,1≤m,n≤10: 对于 100% ...

  7. Luogu 1006 传纸条 / NOIP 2008 传纸条(动态规划)

    Luogu 1006 传纸条 / NOIP 2008 传纸条(动态规划) Description 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m ...

  8. 【洛谷】【动态规划(多维)】P1006 传纸条

    [题目描述:] 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸 ...

  9. 洛谷 P1006 传纸条 题解

    P1006 传纸条 题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法 ...

随机推荐

  1. PageRank算法(网页排名)

    Google用它来体现网页的相关性和重要性

  2. osgEarth使用笔记4——加载矢量数据

    目录 1. 概述 2. 详论 2.1. 基本绘制 2.2. 矢量符号化 2.2.1. 可见性 2.2.2. 高度设置 2.2.3. 符号化 2.2.4. 显示标注 2.3. 其他 3. 结果 4. 问 ...

  3. Linux系统编程—信号集操作函数

    先来回顾一下未决信号集是怎么回事. 信号从产生到抵达目的地,叫作信号递达.而信号从产生到递达的中间状态,叫作信号的未决状态.产生未决状态的原因有可能是信号受到阻塞了,也就是信号屏蔽字(或称阻塞信号集, ...

  4. Markdown语法及使用方法完整手册

    欢迎使用 Markdown在线编辑器 MdEditor Markdown是一种轻量级的「标记语言」 Markdown是一种可以使用普通文本编辑器编写的标记语言,通过简单的标记语法,它可以使普通文本内容 ...

  5. 自定义 Spring Boot Starter

    关于Starter Spring Boot秉承"约定大于配置"的开发方式,使得我们基于Spring Boot开发项目的效率变得十分高.相信使用过Spring Boot的小伙伴都会发 ...

  6. 爬虫之Selenium

    简介 selenium最初是一个自动化测试工具,而爬虫中使用它主要是为了解决requests无法直接执行JavaScript代码的问题 selenium本质是通过驱动浏览器,完全模拟浏览器的操作,比如 ...

  7. Python--网络爬虫模块requests模块之响应--response

    当requests发送请求成功后,requests就会得到返回值,如果服务器响应正常,就会接收到响应数据: Response响应中的属性和方法 常用属性: status_code: 数据类型:int ...

  8. JS关闭chorme页面

    百度到的很多答案都失效了,这是收集一位博主的(https://www.jianshu.com/p/9dc2752194b8),目前可以使用. 代价是打开一个空白页面,能实现无提示关闭当前页面.不需要是 ...

  9. MVC-WebApi配置 Swagger(Web Api可视化文档)

    一.从创建MVC WebApi开始 第一步创建MVC WebApi就创建好了,接下来就进入正题,上干货 ================================================ ...

  10. swoft 使用协程 初试

    控制器访问 /hi /** * @Swoft\Bean\Annotation\Mapping\Inject("UserService") * @var UserService */ ...