损失函数

1. 损失函数概念

损失函数:衡量模型输出与真实标签的差异

\[损失函数(Loss Function): Loss = f(\hat y,y)
\]
\[代价函数(Cost Function): Cost =\frac{1}{N} \sum^{N}_{i}f(\hat y_i ,y_i)
\]
\[目标函数(Objective Function): Obj = Cost+Regularization
\]

损失函数:计算一个样本的一个差异

代价函数:计算整个样本的loss的平均值

目标函数:表示最终的一个目标,目标函数来说在有约束条件下的最小化就是损失函数(loss function)

代价函数未必是越小越好,因为很可能出现过拟合。因此为了不让代价函数达到最小,出现过拟合。于是我们就添加了Regularization的正则项L1,L2。

  1. 损失函数
class _Loss(Module):
def __init__(self,reduction='mean'):
super(_Loss, self).__init__()
if size_average is not None or reduce is not None:
self.reduction = _Reduction.legacy_get_string(size_average, reduce)
else:
self.reduction = reduction

分析流程:

crossentropyLoss的流程:

loss_functoin = nn.CrossEntropyLoss()   #①处

先通过nn.CrossEntropyLoss构建损失函数赋给loss_function,紧接着在训练过程中通过

loss = loss_functoin(outputs, labels)   #②处

进行计算其损失函数,输入神经网络模型的输出outputs的值和标签进行loss。

在①②处设置断点,step into①处时,进入loss.py,调用class CrossEntropyLoss类,继承_WeightedLoss类,也就是会继承一个带权值的Loss类。进入init的初始化类,能够看到它调用了一个父类的super(CrossEntropyLoss)的初始化类,再step into,能够看到它是一个_WeightedLoss类的init初始化,这个类继承_Loss这个基本类。再通过step into能够看到是继承的Module类,其主要是设置reduction。在这里reduction="mean"。

接下来我们在step into②处进行step into。刚刚在lossfunction处我们已经知道lossfunction是一个Module类型,所以这里输入一个outputs和labels之后就是执行了一个forward.在这里step into后的hook就比较熟悉,我们直接进入到

result = self.forward(*input, **kwargs)

再进入到step into后,进入到forward模块

    def forward(self, input: Tensor, target: Tensor) -> Tensor:
return F.cross_entropy(input,target,weight=self.weight,ignore_index=self.ignore_index,reduction=self.reduction)

step into [F.cross_entropy],进入到functional.py中

    if size_average is not None or reduce is not None:
reduction = _Reduction.legacy_get_string(size_average, reduce)
return nll_loss(log_softmax(input, 1), target, weight, None, ignore_index, None, reduction)

接下来就能够计算出loss,在这里为[loss:tensor(0.7012, grad_fn=<NllLossBackward>)]

损失函数

  1. nn.CrossEntropyLoss

    功能:nn.LogSoftmax()[采用softmax进行归一化处理]与nn.NLLLoss()结合,进行交叉熵计算[和公式意义上的交叉熵不同之处:采用softmax进行归一化,把数据值归一到一个概率输出的模式,交叉熵损失函数常常用在分类任务当中,分类任务中通常需要计算两个输出的概率值,因为在分类任务当中我们的输出常常是以概率值为主的,所以交叉熵在这里主要是衡量两个概率分布之间的差异,所以交叉熵的值越低,表示两个概率分布越近越相似]

    交叉熵=信息熵+相对熵
\[{交叉熵: } H(P,Q) = -\sum^{N}_{i=1}P(x_i)log Q(x_i)\\
{自信息: }I(x)=-log[p(x)]\\
{熵(信息熵):}H(P)=E_{x\sim p}[I(x)]=-\sum^{N}_{i}P(x_i)logP(x_i)\\
{相对熵:}D_KL(P,Q)=E_{x\sim p}\Big[log \frac{P(x)}{Q(x)}\Big]\\
=E_{x\sim p}[logP(x)-logQ(x)]\\
=\sum_{i=1}^{N}P(x_i)[log P(x_i)-logQ(x_i)]\\
=\sum_{i=1}^{N}P(x_i)logP(x_i)-\sum_{i=1}^{N}P(x_i)logQ(x_i)\\
=H(P,Q)-H(P)\\
{交叉熵:}H(P,Q) = D_{KL}(P,Q)+H(P)
\]

[熵是香农从热力学方面引申的一个概念,用来描述该事情的不确定性,一个事件越不确定,它的熵就越大,例如明天下雨这件事的熵就比明天太阳升起这件事的熵要大。自信息是用来衡量单个事件的不确定性,px是事件x的概率,对概率取一个-log。熵是整个概率分布的不确定性,用来描述整个概率分布,它是自信息的一个期望。相对熵又叫KL散度,用来衡量两个分布之间的差异距离,虽然是可以计算的,但是它不是一个距离函数,距离函数是有对称性的,这里的相对熵没有对称性。从公式上来看,P是真实的分布,Q是模型输出的一个分布,我们需要用Q去拟合P的分布,所以是不具备对称性的。它是对log P(x)/Q(x)]求取期望。因此在深度学习的模型中,我们去优化交叉熵,实际上就是去优化相对熵的,训练集的P是固定的常数,所以在优化中是优化DKL(P,Q)]

在伯努利模型中,很容易发现概率为0.5的Loss值是0.69,通常意义表明模型训练坏了,当前模型不具备任何判别能力。因为它对任何的输出都是0.5,可能或者不可能。

主要参数:

  • weight:各类别的loss设置权值,在公式中如下,如果我们想让第0类的loss更大点,让模型更关注第0类,我们可以把它的weight设置为1.2
  • ignore_index:忽略某个类别,不计算Loss
  • reduction:计算模式,可为none/sum/mean

    none:逐个元素计算

    sum:所有元素求和,返回标量

    mean:加权平均,返回标量

    nn.CrossEntropyLoss(weight=None,size_average=None,ignore_index=-100,reduce=None,reduction='mean')

交叉熵的计算公式如下:

\[x是概率值,class是类别值
\\H(P,Q)=\sum^{N}_{i=1}P(x_i)logQ(x_i)\\
loss(x,class)=-log\Big(\frac{exp(x[class])}{\sum_j exp(x[j])} \Big)=-x[class]+log\Big(\sum_j exp(x[j]) \Big)\\
softmax归一化=\frac{exp(x[class])}{\sum_j exp(x[j])}\\
将这一个神经元的输出值归一化到一个概率取值区间。
\]
  1. NLL/BCE/BCEWithLogits Loss

nn.NLLLoss

功能:实现负对数似然函数中的负号功能

主要参数:

  • weight:各类别的Loss设置权值
  • ignore_index:忽略某个类别
  • reduction:计算模式,可为none/sum/mean
nn.NLLLoss(weight=None,size_average=None,ignore_index=-100,reduce=None,reduction='mean')
\[l(x,y)=L=\{l_1,...,l_N\}^T,l_n=-{w_{y_n}}x_{n,y_n}
\]

nn.BCELoss

功能:二分类交叉熵

注意事项:输入值取值在[0,1]

主要参数:

  • weight:各类别的Loss设置权值
  • ignore_index:忽略某个类别
  • reduction:计算模式,可为none/sum/mean

    none-逐个元素计算

    sum-所有元素求和,返回标量

    mean-加权平均,返回标量
nn.BCELoss(weight=None,size_average=None,reduce=None,reduction='mean')
\[l_n = -w_n[y_n*log{x_n} +(1-y_n)*log(1-x_n) ]
\]

nn.BCEWithLogitsLoss

功能:结合Sigmoid与二分类交叉熵

注意事项:网络最后不加sigmoid函数

主要参数:

  1. pos_weight:正样本的权值
  2. weight:各类别的Loss设置权值
  3. ignore_index:忽略某个类别
  4. reduction:计算模式:none,sum,mean

    代码:
nn.BCEWithLogitsLoss(weight=None,size_average=None,reduce=None,reduction='mean',pos_weight=None)
\[l_n = -w_n[y_n * log(1- \sigma{(x_n)})]
\]

pytorch(15)损失函数的更多相关文章

  1. pytorch常用损失函数

    损失函数的基本用法: criterion = LossCriterion() #构造函数有自己的参数 loss = criterion(x, y) #调用标准时也有参数 得到的loss结果已经对min ...

  2. 库、教程、论文实现,这是一份超全的PyTorch资源列表(Github 2.2K星)

    项目地址:https://github.com/bharathgs/Awesome-pytorch-list 列表结构: NLP 与语音处理 计算机视觉 概率/生成库 其他库 教程与示例 论文实现 P ...

  3. [pytorch]pytorch loss function 总结

    原文: http://www.voidcn.com/article/p-rtzqgqkz-bpg.html 最近看了下 PyTorch 的损失函数文档,整理了下自己的理解,重新格式化了公式如下,以便以 ...

  4. python常用20库

    python核心库和统计 简述 1. Requests.最着名的http库由kenneth reitz编写.这是每个python开发人员必备的. 2. Scrapy.如果您参与webscraping, ...

  5. Jetson Nano系列教程0:初识Jetson Nano

    关于Jetson Nano Developer Kit Jetson nano搭载四核Cortex-A57 MPCore 处理器,采用128 核 Maxwell™  GPU.支持JetPack SDK ...

  6. PyTorch的十七个损失函数

    本文截取自<PyTorch 模型训练实用教程>,获取全文pdf请点击: tensor-yu/PyTorch_Tutorial​github.com 版权声明:本文为博主原创文章,转载请附上 ...

  7. 【小白学PyTorch】15 TF2实现一个简单的服装分类任务

    [新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx64501661 ...

  8. pytorch 损失函数

    pytorch损失函数: http://blog.csdn.net/zhangxb35/article/details/72464152?utm_source=itdadao&utm_medi ...

  9. Pytorch的19种损失函数

    基本用法 12 criterion = LossCriterion() loss = criterion(x, y) # 调用标准时也有参数 损失函数 L1范数损失:L1Loss 计算 output ...

随机推荐

  1. codeforces251A. Points on Line

    Little Petya likes points a lot. Recently his mom has presented him n points lying on the line OX. N ...

  2. Codeforces Round #652 (Div. 2) B. AccurateLee(思维)

    题意: 给你一个01字符串,现在你可以删除其中的一些子序列,要求如下:当遇到1 0的俩个连续子字符串后,可以删除其中的一个字符,现在要求把他删到尽量最短并且字典序最小,输出最后的字符串 题解: 刚开始 ...

  3. tju3243 Blocked Road

    There are N seaside villages on X island, numbered from 1 to N. N roads are built to connect all of ...

  4. WSL2 VS Code远程开发.Net Core

    修改 我们打开一个页面,随便修改一下,保存,结果会出现错误:Unable to write file (NoPermissions (FileSystemError): Error: EACCES: ...

  5. C#枚举(一)使用总结以及扩展类分享

    0.介绍 枚举是一组命名常量,其基础类型为任意整型. 如果没有显式声明基础类型, 则为Int32 在实际开发过程中,枚举的使用可以让代码更加清晰且优雅. 最近在对枚举的使用进行了一些总结与整理,也发现 ...

  6. 阿里云 MaxCompute(ODPS)

    大数据产品架构 BASE - Dataworks ODPS - MaxCompute ODPS 功能组成(Open Data Process Service) ODPS 是旧称,阿里云公有云服务中现称 ...

  7. sscanf的最基础用法(非原创)

    1 #include<stdio.h> 2 #include<stdlib.h> 3 #include<string.h> 4 5 int main(){ 6 ch ...

  8. Ubuntu下跑通py-faster-rcnn、详解demo运作流程

    在不同的服务器不同的机器上做过很多次实验,分别遇到各种不一样的错误并且跑通Py-Faster-RCNN,因此,在这里做一个流程的汇总: 一.下载文件: 首先,文件的下载可以有两种途径: 1.需要在官网 ...

  9. 51nod1459 带权最短路

    1459 迷宫游戏 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 你来到一个迷宫前.该迷宫由若干个房间组成,每个房间都有一个得分,第一次进入这个房间,你就可以得到这个分 ...

  10. php 文件包含base64读取文件 preg_replace函数

    解题部分题目来源攻防世界web高手进阶区1.拿到题目以后,发现是一个index.php的页面,并且设备-没有显示完全,此位置可疑.2.源代码中发现?page=index,出现page这个get参数,联 ...