1.基本概念

标量:就是一个数,是0维的,只有大小,没有方向

向量:是1*n的一列数,是1维的,有大小,也有方向

张量:是n*n的一堆数,是2维的,n个向量合并而成

2.a.size(),a.shape(),a.numel(),a.dim()的区别

a.size():输出a的某一维度中元素的个数,若未指定维度,则计算所有元素的个数

a.shape():输出a数组各维度的长度信息,返回是元组类型。

a.numel():输出a占用内存的数量

a.dim():输出a的维数

3.tensor的基本函数:

import torch
import numpy as np if __name__ == '__main__':
# 随机正太分布
a=torch.randn(2,3)
print("a:",a)
print("a.size():",a.size())
print("a.size(0):",a.size(0))
print("a.size(1):",a.size(1))
print("a.shape[0]:",a.shape[0])
print("a.shape[1]:",a.shape[1])
print("a.shape:",a.shape)
# 将a.shape转换成list
print("list(a.shape):",list(a.shape))
# 输出a占用内存的数量=2*3
print("a.numel():",a.numel())
# 输出a的维数
print("a.dim():",a.dim())
print() # 0~1随机均匀分布
b=torch.rand(2,3,4)
print("b:",b)
print("b.size():",b.size())
print("b.size(0):",b.size(0))
print("b.size(1):",b.size(1))
print("b.shape[0]:",b.shape[0])
print("b.shape[1]:",b.shape[1])
print("b.shape:",b.shape)
print("list(b.shape):",list(b.shape))
# 输出b占用内存的数量=2*3*4
print("b.numel():",b.numel())
print("b.dim():",b.dim())
print()

运行结果:

a: tensor([[-0.2106, -2.1292, -0.8221],
[-1.5805, 0.2592, -1.1203]])
a.size(): torch.Size([2, 3])
a.size(0): 2
a.size(1): 3
a.shape[0]: 2
a.shape[1]: 3
a.shape: torch.Size([2, 3])
list(a.shape): [2, 3]
a.numel(): 6
a.dim(): 2 b: tensor([[[0.8126, 0.8908, 0.3507, 0.1554],
[0.8679, 0.5295, 0.5461, 0.5021],
[0.2570, 0.2250, 0.6310, 0.0662]], [[0.1139, 0.9552, 0.5847, 0.5421],
[0.3589, 0.0090, 0.0324, 0.6984],
[0.9562, 0.4533, 0.4296, 0.4052]]])
b.size(): torch.Size([2, 3, 4])
b.size(0): 2
b.size(1): 3
b.shape[0]: 2
b.shape[1]: 3
b.shape: torch.Size([2, 3, 4])
list(b.shape): [2, 3, 4]
b.numel(): 24
b.dim(): 3

tensor的创建:

# 将一个numpy的变量转变成torch类型的
# c是一个一行两列的,[2.2 , 3.3] 矩阵
c=np.array([2.2,3.3])
print(torch.from_numpy(c)) # d是一个三行四列的值为1的矩阵
d=np.ones([3,4])
# 导入后类型转变成了torch.float64()
print(torch.from_numpy(d))
print() # 小写的tensor()接受的是现有的数据,一行两列
print("torch.tensor([2,3]):\n",torch.tensor([2,3]))
print()
# 大写的FloatTensor()接受的是数据的维度,两行三列,(也可以接受现有的数据)
print("torch.FloatTensor(2,3):\n",torch.FloatTensor(2,3))
print() # 不推荐使用上边的方法,因为上边初始化,会生成非常大或者非常小的值
# 而是推荐使用随机生成指定数值区间的初始化
# rand(2,3):随机生成值在0~1区间的,两行三列的的张量
print("torch.rand(2,3):\n",torch.rand(2,3))
print() # rand_like() 参数是一个张量(tensor),相当于把e的shape读出来,之后再送给rand函数
e=torch.rand(3,4)
print("torch.rand_like(e): //e是一个三行四列的张量\n",torch.rand_like(e))
print() # randint() 参数依次是,randint(最小值,最大值,shape),取不到最大值
print("torch.randint(1,10,[3,4]):\n",torch.randint(1,10,[3,4]))

运行结果:

tensor([2.2000, 3.3000], dtype=torch.float64)
tensor([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]], dtype=torch.float64) torch.tensor([2,3]):
tensor([2, 3]) torch.FloatTensor(2,3):
tensor([[0., 0., 0.],
[0., 0., 0.]]) torch.rand(2,3):
tensor([[0.4876, 0.7776, 0.3553],
[0.3311, 0.9068, 0.0672]]) torch.rand_like(e): //e是一个三行四列的张量
tensor([[0.0792, 0.8138, 0.6931, 0.8604],
[0.2047, 0.9061, 0.8075, 0.1821],
[0.0216, 0.2109, 0.4703, 0.7405]]) torch.randint(1,10,[3,4]):
tensor([[8, 3, 2, 7],
[6, 3, 8, 6],
[1, 4, 1, 5]])

4.tensor的创建与切片

import torch

if __name__ == '__main__':

    # 生成一个两行三列的矩阵,并把所有值赋值为3.92
c=torch.full((2, 3), 3.92)
print('torch.full((2, 3), 3.92):\n',c,'\n') # 步长为2,按序生成0~10之间的数字
d=torch.arange(0,10,step=2)
print('d=torch.arange(0,10,step=2):\n',d,'\n') # 均匀生成某段数据
e=torch.linspace(0,10,steps=10)
print('torch.linspace(0,10,steps=10):\n',e,'\n')
e1=torch.linspace(0,10,steps=11)
print('e1=torch.linspace(0,10,steps=11):\n',e1,'\n') # 值全为1矩阵
f=torch.ones(3,3)
print('torch.ones(3,3):\n',f,'\n')
# 值全为零矩阵
f1=torch.zeros(3,3)
print('torch.zeros(3,3):\n',f1,'\n')
# 单位矩阵
f2=torch.eye(3,3)
print('torch.eye(3,3):\n',f2,'\n') g=torch.rand(4,3,28,28)
print('shape的基本使用:')
print(g[0].shape)
print(g[0,0].shape)
print(g[0,0,2,4]) print('\ntensor的切片使用:')
# 取前两张图片
print(g[:2].shape)
# 取第二张图片向后及第一个通道向后
print(g[2:,1:].shape)
# 行:隔七个采一个样,列:隔14个采一个样,(start:stop:step)
print(g[0,0,0:28:7,::14]) h=torch.randn(3,4)
print('\n',h)
# 矩阵中值大于0.5的 赋值为ture
mask=h.__ge__(0.5)
print(mask)
print(torch.masked_select(h,mask))

运行结果:

torch.full((2, 3), 3.92):
tensor([[3.9200, 3.9200, 3.9200],
[3.9200, 3.9200, 3.9200]]) d=torch.arange(0,10,step=2):
tensor([0, 2, 4, 6, 8]) torch.linspace(0,10,steps=10):
tensor([ 0.0000, 1.1111, 2.2222, 3.3333, 4.4444, 5.5556, 6.6667, 7.7778,
8.8889, 10.0000]) e1=torch.linspace(0,10,steps=11):
tensor([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.]) torch.ones(3,3):
tensor([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]]) torch.zeros(3,3):
tensor([[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]]) torch.eye(3,3):
tensor([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]]) shape的基本使用:
torch.Size([3, 28, 28])
torch.Size([28, 28])
tensor(0.7568) tensor的切片使用:
torch.Size([2, 3, 28, 28])
torch.Size([2, 2, 28, 28])
tensor([[0.4571, 0.3198],
[0.6540, 0.3359],
[0.2601, 0.8069],
[0.9713, 0.6876]])
tensor([[-2.4096, 1.1243, -1.0314, -1.4685],
[-2.5054, 0.7131, -0.0376, -0.2110],
[ 1.8922, 1.8989, 0.0459, -1.6457]])
tensor([[False, True, False, False],
[False, True, False, False],
[ True, True, False, False]])
tensor([1.1243, 0.7131, 1.8922, 1.8989])

Pytorch-tensor的创建,索引,切片的更多相关文章

  1. pytorch张量数据索引切片与维度变换操作大全(非常全)

    (1-1)pytorch张量数据的索引与切片操作1.对于张量数据的索引操作主要有以下几种方式:a=torch.rand(4,3,28,28):DIM=4的张量数据a(1)a[:2]:取第一个维度的前2 ...

  2. Pytorch Tensor 常用操作

    https://pytorch.org/docs/stable/tensors.html dtype: tessor的数据类型,总共有8种数据类型,其中默认的类型是torch.FloatTensor, ...

  3. Python array,list,dataframe索引切片操作 2016年07月19日——智浪文档

    array,list,dataframe索引切片操作 2016年07月19日——智浪文档 list,一维,二维array,datafrme,loc.iloc.ix的简单探讨 Numpy数组的索引和切片 ...

  4. 列表的初识,列表的索引切片,列表的增删改查,列表的嵌套,元组的初识,range

    1 内容总览 列表的初识 列表的索引切片 列表的增删改查 列表的嵌套 元组的初识(了解) 元组的简单应用(了解) range 2 具体内容 列表的初识 why: str: 存储少量的数据.切片出来全都 ...

  5. SQL语句-创建索引

    语法:CREATE [索引类型] INDEX 索引名称ON 表名(列名)WITH FILLFACTOR = 填充因子值0~100 GO USE 库名GO IF EXISTS (SELECT * FRO ...

  6. *使用while循环遍历数组创建索引和自增索引值

    package com.chongrui.test;/* *使用while循环遍历数组 *  *  * */public class test {    public static void main ...

  7. 程序员眼中的 SQL Server-执行计划教会我如何创建索引?

    先说点废话 以前有 DBA 在身边的时候,从来不曾考虑过数据库性能的问题,但是,当一个应用程序从头到脚都由自己完成,而且数据库面对的是接近百万的数据,看着一个页面加载速度像乌龟一样,自己心里真是有种挫 ...

  8. SQL Server创建索引(转)

    什么是索引 拿汉语字典的目录页(索引)打比方:正如汉语字典中的汉字按页存放一样,SQL Server中的数据记录也是按页存放的,每页容量一般为4K .为了加快查找的速度,汉语字(词)典一般都有按拼音. ...

  9. hive创建索引

    索引是hive0.7之后才有的功能,创建索引需要评估其合理性,因为创建索引也是要磁盘空间,维护起来也是需要代价的 创建索引 hive> create index [index_studentid ...

  10. MongoDB性能篇之创建索引,组合索引,唯一索引,删除索引和explain执行计划

    这篇文章主要介绍了MongoDB性能篇之创建索引,组合索引,唯一索引,删除索引和explain执行计划的相关资料,需要的朋友可以参考下 一.索引 MongoDB 提供了多样性的索引支持,索引信息被保存 ...

随机推荐

  1. PetriCrode ---Code Genreation for Colored Petri Nets Annotated with Pragmatics

    1. PetriCode lets users generate code from CPN  models annotated with pragmatics ,PetriCode allows t ...

  2. Prometheus四种指标及PromQL实例

    Prometheus四种主要的指标类型包括Counter.Gauge.Histogram和Summary,以及相应的PromQL实例如下: Counter(计数器) 作用:只增不减的计数器,常用于记录 ...

  3. python可视化工具pyecharts初相识

    一 概念 1.pyecahrts基础 某度开源了一个python的可视化工具pyecharts,该工具凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可.而 python 是一门富有表达力的语 ...

  4. 应用层01-HTTP

    2.1 应用层协议原理 2.1.1 网络应用程序体系结构 研发网络应用的程序的核心是写出能够运行在不同的端系统和通过网络彼此通信的程序. 例如: Web应用程序 客户:浏览器程序(进程) 服务:Web ...

  5. 一个简单的RTMP服务器实现 --- RTMP与H264

    PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明   本文作为本人csdn blog的主站的备份.(Bl ...

  6. STM32 启动代码分析

    PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明   本文作为本人csdn blog的主站的备份.(Bl ...

  7. 性能测试系列:Jmeter使用记录

    jmeter配置环境变量vi /etc/profileexport PATH=$PATH:/tmp/jmeter/apache-jmeter-5.4.1/binsource /etc/profile ...

  8. 第145篇:js设计模式注册模式及相应实践

    好家伙,   0.索引  在阿里的低开项目中,使用这种形式去注册组件,我不禁好奇,这到底是个什么玩意 1.概念 在 JavaScript 中,注册模式(Registry Pattern)是一种设计模式 ...

  9. [MySQL]细节、经验

    [版权声明]未经博主同意,谢绝转载!(请尊重原创,博主保留追究权) https://blog.csdn.net/m0_69908381/article/details/129922615 出自[进步* ...

  10. KingbaseES V8R6集群运维案例之---主备failover切换原因分析

    案例说明: 生产环境,KingbaseES V8R6的集群发生failover切换,分析集群切换的原因. 适用版本: KingbaseES V8R6 集群架构: 137.xx.xx.67主 原备库 1 ...