题目传送门

分析:首次考虑暴力枚举 \(l_{1},r_{1},l_{2},r_{2}\),配合前缀和时间复杂度 \(O(N^{4})\),需要想办法优化。对于这种两段区间不重合的,我们考虑枚举两段区间之间的断点,设 \(max\_{l}[x]\)表示由区间 \([1,x]\)所能得到的区间异或最大值, \(max\_{r}[x]\)表示由区间 \([x,n]\)所能得到的区间异或最大值,那么答案即为 \(\max(max\_l[i]+max\_r[i+1])(i \in [1,n))\)。现在要想办法计算 \(max\_l\)和 \(max\_r\),考虑更新 \(max\_{l}[x]\),不难得出 \(max\_{l}[x] = \max(max\_l[x-1], \max(a_{i} \oplus a_{i+1} \oplus... \oplus a_{x})(i \in [1,x]))\), \(\max(a_{i} \oplus a_{i+1} \oplus... \oplus a_{x})(i \in [1,x])\)通过 \(Trie\)树和异或前缀和即可求出,不会的话可以看下这道题。然后就可以 \(O(N)\)求解了。

#include<cstdio>
#include<algorithm>
using namespace std;
const int N = 4e5 + 5; struct Trie{
int root, id;
bool bit[32]; struct Node{
int val, siz, ch[2];
Node(){ ch[0] = ch[1] = -1, val = siz = 0; }
}node[N * 32]; void get(int x){
for(int i = 0; i < 32; ++i, x >>= 1) bit[i] = x & 1;
} void init(){
for(int i = 0; i <= id; ++i){
node[i].ch[0] = node[i].ch[1] = -1;
node[i].val = node[i].siz = 0;
}
id = root = 0;
} void insert(int x){
get(x);
int u = root;
for(int i = 31; i >= 0; --i){
if(node[u].ch[bit[i]] == -1) node[u].ch[bit[i]] = ++id;
u = node[u].ch[bit[i]];
++node[u].siz;
}
node[u].val = x;
} int find(int x){ // 返回与x异或最大的数
get(x);
int u = root;
for(int i = 31; i >= 0; --i){
int s1 = node[u].ch[!bit[i]], s2 = node[u].ch[bit[i]];
if(s1 != -1 && node[s1].siz > 0) u = s1;
else if(s2 != -1 && node[s2].siz > 0) u = s2;
else return x; // 注意根据需要调整返回值
}
return node[u].val;
}
}trie; int n, ans;
int a[N], max_l[N], max_r[N], p[N]; void work(){
int Xor = 0;
trie.insert(0);
for(int i = 1; i <= n; ++i){
Xor ^= a[i];
p[i] = max(p[i - 1], trie.find(Xor) ^ Xor);
trie.insert(Xor);
}
} int main(){
scanf("%d", &n);
for(int i = 1; i <= n; ++i) scanf("%d", &a[i]);
work();
for(int i = 1; i <= n; ++i) max_l[i] = p[i];
for(int l = 1, r = n; l < r; ++l, --r) swap(a[l], a[r]);
trie.init();
work();
for(int i = n; i; --i) max_r[i] = p[n - i + 1];
for(int i = 1; i < n; ++i) ans = max(ans, max_l[i] + max_r[i + 1]);
printf("%d", ans);
return 0;
}

[Codechef REBXOR]Nikitosh and xor (Trie,异或)的更多相关文章

  1. 【BZOJ】4260: Codechef REBXOR【Trie树】【前后缀异或最大】

    4260: Codechef REBXOR Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2218  Solved: 962[Submit][Stat ...

  2. 【BZOJ4260】 Codechef REBXOR 可持久化Trie

    看到异或就去想前缀和(⊙o⊙) 这个就是正反做一遍最大异或和更新答案 最大异或就是很经典的可持久化Trie,从高到低贪心 WA: val&(1<<(base-1))得到的并不直接是 ...

  3. BZOJ 4260: Codechef REBXOR( trie )

    求出前缀和, 那么以第x个元素结尾的最大异或值是max(sumx^sump)(1≤p<x), 用trie加速. 后缀同理, 然后扫一遍就OK了.时间复杂度O(31N) ------------- ...

  4. 【BZOJ4260】Codechef REBXOR (Trie树)

    [BZOJ4260]Codechef REBXOR (Trie树) 题面 BZOJ 题解 两眼题.第一眼不会做,第二眼好简单... 前缀异或和一下,拿\(Trie\)树维护求一个在这个端点以左的最大值 ...

  5. 【BZOJ4260】Codechef REBXOR Trie树+贪心

    [BZOJ4260]Codechef REBXOR Description Input 输入数据的第一行包含一个整数N,表示数组中的元素个数. 第二行包含N个整数A1,A2,…,AN. Output ...

  6. [Bzoj4260]Codechef REBXOR(trie树)

    4260: Codechef REBXOR Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1534  Solved: 669[Submit][Stat ...

  7. bzoj 4260: Codechef REBXOR (01 Trie)

    链接: https://www.lydsy.com/JudgeOnline/problem.php?id=4260 题面: 4260: Codechef REBXOR Time Limit: 10 S ...

  8. BZOJ 4260: Codechef REBXOR (trie树维护异或最大值)

    题意 分析 将区间异或和转化为前缀异或和.那么[L,R][L,R][L,R]的异或和就等于presum[R] xor presum[L−1]presum[R]\ xor \ presum[L-1]pr ...

  9. BZOJ 4260 Codechef REBXOR (区间异或和最值) (01字典树+DP)

    <题目链接> 题目大意:给定一个序列,现在求出两段不相交的区间异或和的最大值. 解题分析: 区间异或问题首先想到01字典树.利用前缀.后缀建树,并且利用异或的性质,相同的两个数异或变成0, ...

  10. [BZOJ4260]Codechef REBXOR(Trie)

    Trie模板题.求出每个前缀和后缀的最大异或和区间,枚举断点就可.不知为何跑得飞快. #include<cstdio> #include<cstring> #include&l ...

随机推荐

  1. 如何选择最适合您的Excel处理库?

    摘要:本文由葡萄城技术团队于博客园原创并首发.转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具.解决方案和服务,赋能开发者. 引言 GcExcel和POI是两个应用于处理Excel文件的技 ...

  2. 循环神经网络RNN完全解析:从基础理论到PyTorch实战

    在本文中,我们深入探讨了循环神经网络(RNN)及其高级变体,包括长短时记忆网络(LSTM).门控循环单元(GRU)和双向循环神经网络(Bi-RNN).文章详细介绍了RNN的基本概念.工作原理和应用场景 ...

  3. 如何理解SpringBoot的Starter

    Starter是SpringBoot的四大核心功能特性之一,除此之外,SpringBoot还有自动装配,Actuator监控等特性 SpringBoot里面的这些特性,都是为了让开发者在开发基于Spr ...

  4. 「codeforces - 1519E」Off by One

    link. 点 \(A\) 与 \((0,0)\),\(B\) 共线的充要条件是 \(\frac{y_A}{x_A}=\frac{y_B}{x_B}\),即 \(k_{OA}=k_{OB}\).又考虑 ...

  5. 「sdoi2019 - D2T2」移动金币

    对 @command_block 没有 implementation 做法的细化.理论来说可以通过,但因为我实现得较劣无法通过.:( 把金币中的空隙看作石子,就是一个阶梯 Nim 的模型(有总共 \( ...

  6. MASA MAUI iOS 文件下载与断点续传

    @ 目录 背景 介绍 方案及代码 1.新建MAUI项目 2.建立NSUrlSession会话连接 3.使用NSUrlSessionDownloadTask 创建下载任务 4.DidWriteData ...

  7. Oracle查询--增加--删除--修改主键

    对Oracle表主键的操作,有四类:查询,增加,修改,删除 1.查询主键 /*查询某个表中存在的约束*/ select * from user_constraints where table_name ...

  8. Python基础知识——函数的基本使用、函数的参数、名称空间与作用域、函数对象与闭包、 装饰器、迭代器、生成器与yield、函数递归、面向过程与函数式(map、reduce、filter)

    文章目录 1 函数的基本使用 一 引入 二 定义函数 三 调用函数与函数返回值 2 函数的参数 一 形参与实参介绍 二 形参与实参的具体使用 2.1 位置参数 2.2 关键字参数 2.3 默认参数 2 ...

  9. git 设置记住密码和清除密码

    git 设置记住密码和清除密码   1. 永久记住密码 该命令会记住密码,执行一次 git pull 或 git push 等需要输入密码的命令,输入一次密码, 之后就都不必再输入了 git conf ...

  10. android studio error

    Invalid method receiver.: Invalid method receiver.java.lang.IllegalStateException: Invalid method re ...