独白:

  利用算法进行查找指定元素,最近学习二分查找和二叉树遍历。二分查找前提是在有序中进行查找,二叉树引入了树的概念。树的概念其中有许多小知识点,也是一种新的数据结构。还是之前的感悟,需了解其本质才会写出更好的算法。


二分查找

  二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。

'''
二分查找
时间复杂度:O(logn) '''
'''
前提是在一个有序的列表
''' import time #
# def binary_search(list, item):
# ''' 非递归实现 '''
#
# first = 0
# last = len(list) - 1
# while first <= last :
# midpoint = ( first + last ) // 2
# if list[midpoint] == item:
# return True
# elif item < list[midpoint]:
# last = midpoint - 1
# else:
# first = midpoint + 1
# return False def binary_search(list, item):
""" 递归实现 """
print(list)
if len(list) == 0:
return False else:
midpoint = len(list) // 2
if list[midpoint] == item:
return True
else:
if list[midpoint] > item:
return binary_search(list[:midpoint], item)
else:
return binary_search(list[midpoint + 1:], item) if __name__ == '__main__':
# 开始时间
first_time = time.time() # 建立个有序的列表
lis = [1, 2, 5, 6, 7, 8, 9, 17, 156, 678] # 列表排序
print(binary_search(lis, 6)) # 结束时间
last_time = time.time() print("共用时%s" % (last_time - first_time))

树与树算法

树的概念

树(英语:tree)是一种抽象数据类型(ADT)或是实作这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合。它是由n(n>=1)个有限节点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:

  • 每个节点有零个或多个子节点;
  • 没有父节点的节点称为根节点;
  • 每一个非根节点有且只有一个父节点;
  • 除了根节点外,每个子节点可以分为多个不相交的子树;

树的术语

  • 节点的度:一个节点含有的子树的个数称为该节点的度;
  • 树的度:一棵树中,最大的节点的度称为树的度;
  • 叶节点或终端节点:度为零的节点;
  • 父亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点;
  • 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点;
  • 兄弟节点:具有相同父节点的节点互称为兄弟节点;
  • 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
  • 树的高度或深度:树中节点的最大层次;
  • 堂兄弟节点:父节点在同一层的节点互为堂兄弟;
  • 节点的祖先:从根到该节点所经分支上的所有节点;
  • 子孙:以某节点为根的子树中任一节点都称为该节点的子孙。
  • 森林:由m(m>=0)棵互不相交的树的集合称为森林;

树的种类

  • 无序树:树中任意节点的子节点之间没有顺序关系,这种树称为无序树,也称为自由树;
  • 有序树:树中任意节点的子节点之间有顺序关系,这种树称为有序树;
    • 二叉树:每个节点最多含有两个子树的树称为二叉树;

      • 完全二叉树:对于一颗二叉树,假设其深度为d(d>1)。除了第d层外,其它各层的节点数目均已达最大值,且第d层所有节点从左向右连续地紧密排列,这样的二叉树被称为完全二叉树,其中满二叉树的定义是所有叶节点都在最底层的完全二叉树;
      • 平衡二叉树(AVL树):当且仅当任何节点的两棵子树的高度差不大于1的二叉树;
      • 排序二叉树(二叉查找树(英语:Binary Search Tree),也称二叉搜索树、有序二叉树);
    • 霍夫曼树(用于信息编码):带权路径最短的二叉树称为哈夫曼树或最优二叉树;
    • B树:一种对读写操作进行优化的自平衡的二叉查找树,能够保持数据有序,拥有多余两个子树

二叉树的基本概念

二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)

二叉树的性质(特性)

性质1: 在二叉树的第i层上至多有2^(i-1)个结点(i>0)
性质2: 深度为k的二叉树至多有2^k - 1个结点(k>0)
性质3: 对于任意一棵二叉树,如果其叶结点数为N0,而度数为2的结点总数为N2,则N0=N2+1;
性质4:具有n个结点的完全二叉树的深度必为 log2(n+1)
性质5:对完全二叉树,若从上至下、从左至右编号,则编号为i 的结点,其左孩子编号必为2i,其右孩子编号必为2i+1;其双亲的编号必为i/2(i=1 时为根,除外)

class Node(object):
'''节点类'''
def __init__(self, elem, lchild = None, rchild = None):
self.elem = elem
self.lchild = lchild
self.rchild = rchild class Tree(object):
'''树类'''
def __init__(self, root = None):
self.root = root def add(self, elem):
'''为树添加节点'''
node = Node(elem)
# 如果是空树,对根节点进行赋值
if self.root == None:
self.root = node
return
else:
queue = []
queue.append(self.root)
# 对已有节点进行层次遍历
while queue:
# 弹出队列的第一个元素
cur = queue.pop(0)
if cur.lchild is None:
cur.lchild = node
return
elif cur.rchild is None:
cur.rchild = node
return
else:
# 如果左右节点不为空,加入队列继续判断
queue.append(cur.lchild)
queue.append(cur.rchild)

二叉树的遍历

树的遍历是树的一种重要的运算。所谓遍历是指对树中所有结点的信息的访问,即依次对树中每个结点访问一次且仅访问一次,我们把这种对所有节点的访问称为遍历(traversal)。那么树的两种重要的遍历模式是深度优先遍历和广度优先遍历,深度优先一般用递归,广度优先一般用队列。一般情况下能用递归实现的算法大部分也能用堆栈来实现。

深度优先遍历

对于一颗二叉树,深度优先搜索(Depth First Search)是沿着树的深度遍历树的节点,尽可能深的搜索树的分支。
那么深度遍历有重要的三种方法。这三种方式常被用于访问树的节点,它们之间的不同在于访问每个节点的次序不同。这三种遍历分别叫做先序遍历(preorder),中序遍历(inorder)和后序遍历(postorder)。我们来给出它们的详细定义,然后举例看看它们的应用。

    • 先序遍历 在先序遍历中,我们先访问根节点,然后递归使用先序遍历访问左子树,再递归使用先序遍历访问右子树
      根节点->左子树->右子树
def preorder(self, root):
"""递归实现先序遍历"""
if root == None:
return
print(root.elem)
self.preorder(root.lchild)
self.preorder(root.rchild)
    • 中序遍历 在中序遍历中,我们递归使用中序遍历访问左子树,然后访问根节点,最后再递归使用中序遍历访问右子树                                 左子树->根节点->右子树
def inorder(self, root):
"""递归实现中序遍历"""
if root == None:
return
self.inorder(root.lchild)
print(root.elem)
self.inorder(root.rchild)
    • 后序遍历 在后序遍历中,我们先递归使用后序遍历访问左子树和右子树,最后访问根节点                                                                               左子树->右子树->根节点
def postorder(self, root):
"""递归实现后续遍历"""
if root == None:
return
self.postorder(root.lchild)
self.postorder(root.rchild)
print (root.elem)

广度优先遍历(层次遍历)

从树的root开始,从上到下从从左到右遍历整个树的节点

def breadth_travel(self, root):
"""利用队列实现树的层次遍历"""
if root == None:
return
queue = []
queue.append(root)
while queue:
node = queue.pop(0)
print (node.elem)
if node.lchild != None:
queue.append(node.lchild)
if node.rchild != None:
queue.append(node.rchild)

在路上---学习篇(一)Python 数据结构和算法 (5)二分查找、二叉树遍历的更多相关文章

  1. python数据结构之树(二分查找树)

    本篇学习笔记记录二叉查找树的定义以及用python实现数据结构增.删.查的操作. 二叉查找树(Binary Search Tree) 简称BST,又叫二叉排序树(Binary Sort Tree),是 ...

  2. python数据结构与算法

    最近忙着准备各种笔试的东西,主要看什么数据结构啊,算法啦,balahbalah啊,以前一直就没看过这些,就挑了本简单的<啊哈算法>入门,不过里面的数据结构和算法都是用C语言写的,而自己对p ...

  3. Python数据结构与算法--List和Dictionaries

    Lists 当实现 list 的数据结构的时候Python 的设计者有很多的选择. 每一个选择都有可能影响着 list 操作执行的快慢. 当然他们也试图优化一些不常见的操作. 但是当权衡的时候,它们还 ...

  4. Python数据结构与算法--算法分析

    在计算机科学中,算法分析(Analysis of algorithm)是分析执行一个给定算法需要消耗的计算资源数量(例如计算时间,存储器使用等)的过程.算法的效率或复杂度在理论上表示为一个函数.其定义 ...

  5. Python数据结构与算法之图的最短路径(Dijkstra算法)完整实例

    本文实例讲述了Python数据结构与算法之图的最短路径(Dijkstra算法).分享给大家供大家参考,具体如下: # coding:utf-8 # Dijkstra算法--通过边实现松弛 # 指定一个 ...

  6. Python数据结构与算法之图的广度优先与深度优先搜索算法示例

    本文实例讲述了Python数据结构与算法之图的广度优先与深度优先搜索算法.分享给大家供大家参考,具体如下: 根据维基百科的伪代码实现: 广度优先BFS: 使用队列,集合 标记初始结点已被发现,放入队列 ...

  7. javascript数据结构与算法---检索算法(二分查找法、计算重复次数)

    javascript数据结构与算法---检索算法(二分查找法.计算重复次数) /*只需要查找元素是否存在数组,可以先将数组排序,再使用二分查找法*/ function qSort(arr){ if ( ...

  8. Python数据结构与算法设计总结篇

    1.Python数据结构篇 数据结构篇主要是阅读[Problem Solving with Python]( http://interactivepython.org/courselib/static ...

  9. Python数据结构与算法设计(总结篇)

    的确,正如偶像Bruce Eckel所说,"Life is short, you need Python"! 如果你正在考虑学Java还是Python的话,那就别想了,选Pytho ...

  10. GitHub上最火的、最值得前端学习的几个数据结构与算法项目!没有之一!

    Hello,大家好,我是你们的 前端章鱼猫. 简介 前端章鱼猫从 2016 年加入 GitHub,到现在的 2020 年,快整整 5 个年头了. 相信很多人都没有逛 GitHub 的习惯,因此总会有开 ...

随机推荐

  1. 王道oj/problem16

    网址:http://oj.lgwenda.com/problem/16 思路:都在注释里,注意增删查的参数以及停止条件 代码: #define _CRT_SECURE_NO_WARNINGS#incl ...

  2. 应用层协议之DNS、DHCP

    运输层为应用进程提供了端对端的通信服务,但不同的网络应用的应用进程之间,还需要有不同的通信规则.因此在运输层协议之上,还需要有应用层协议. 应用层中有这些常见的协议 域名系统:DNS 动态主机配置:D ...

  3. Rollup 编译资源离不开 plugin

    rollup 也是一个 JavaScript 的模块化编译工具,可以帮助我们处理资源. 与webpack比较 rollup相比 webpack 理念更为简单,能处理的场景也更有限. 资源类型 处理方式 ...

  4. 如何选择最适合您的Excel处理库?

    摘要:本文由葡萄城技术团队于博客园原创并首发.转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具.解决方案和服务,赋能开发者. 引言 GcExcel和POI是两个应用于处理Excel文件的技 ...

  5. 更专业省心的来了,你没必要研究UE4和Unity官方推流了!

    在当今互联网时代,所有的内容制作者都希望尽可能触达到更多的目标受众,那就需要全平台发布内容并且可以轻松跨平台分享,包括手机.平板电脑.个人电脑以及交互式屏幕,用户能畅快的获得高质量的体验.需求催生了一 ...

  6. Linux校验文件MD5和SHA值的方法

    1.需求背景 下载或传输文件后,需要计算文件的MD5.SHA256等校验值,以确保下载或传输后的文件和源文件一致 2.校验方法 如上图所示,可以使用Linux自带的校验命令来计算一个文件的校验值 Li ...

  7. 8、Mybatis之自定义映射

    8.1.环境搭建 8.1.1.创建新module 创建名为mybatis_resultMap的新module,过程参考5.1节 8.1.2.创建t_emp和t_dept表 CREATE TABLE ` ...

  8. 系统内存管理:虚拟内存、内存分段与分页、页表缓存TLB以及Linux内存管理

    虚拟内存 虚拟内存是一种操作系统提供的机制,用于将每个进程分配的独立的虚拟地址空间映射到实际的物理内存地址空间上.通过使用虚拟内存,操作系统可以有效地解决多个应用程序直接操作物理内存可能引发的冲突问题 ...

  9. 《Kali渗透基础》13. 无线渗透(三)

    @ 目录 1:无线通信过程 1.1:Open 认证 1.2:PSK 认证 1.3:关联请求 2:加密 2.1:Open 无加密网络 2.2:WEP 加密系统 2.3:WPA 安全系统 2.3.1:WP ...

  10. PyCharm的基础了解

    简单了解PyCharm PyCharm的简单使用 修改主题 1 2 切换解释器 1 如何创建pythin文件 1 2 3 4 注释语法 行注释 这里是注释 块注释 '''这里是注释''' 常量和变量的 ...