Generic Types of Ranges

  类型萃取从字面意思上来说其实就是帮助我们挑选某个对象的类型,筛选特定的对象来做特定的事。可以先来回顾一下以前的写法。

#include <vector>
#include <iterator> int main() {
std::vector v{1, 2, 3};
using iterator_type = std::vector<int>::iterator; using difference_type = std::iterator_traits<iterator_type>::difference_type;
using iterator_catogory = std::iterator_traits<iterator_type>::iterator_category;
using pointer = std::iterator_traits<iterator_type>::pointer;
using reference = std::iterator_traits<iterator_type>::reference;
using value_type = std::iterator_traits<iterator_type>::value_type;
}

  到了C++20,我们有了ranges,我们有了更多强大的工具,可以说它们是处理ranges的强大工具,我们来看看具体的内容。

  通过上图,很多内容都直观明了,为了避免晦涩难懂的抽象话术,我们通过代码来看看具体用法。

#include <vector>
#include <ranges>
#include <algorithm>
#include <iterator>
#include <type_traits> int main() {
std::vector v{10, 20, 30}; static_assert(std::is_same_v<std::ranges::iterator_t<decltype(v)>::difference_type,
std::iterator_traits<decltype(v)::iterator>::difference_type>); // OK
static_assert(std::is_same_v<std::ranges::iterator_t<decltype(v)>::pointer,
std::iterator_traits<decltype(v)::iterator>::pointer>); // OK
static_assert(std::is_same_v<std::ranges::iterator_t<decltype(v)>::reference,
std::iterator_traits<decltype(v)::iterator>::reference>); // OK
static_assert(std::is_same_v<std::ranges::iterator_t<decltype(v)>::value_type,
std::iterator_traits<decltype(v)::iterator>::value_type>); // OK
static_assert(std::is_same_v<std::ranges::iterator_t<decltype(v)>::iterator_category,
std::iterator_traits<decltype(v)::iterator>::iterator_category>); // OK
// 可以明显看到,比起传统的迭代器萃取,C++20的处理方式更加简洁,只用传入ranges类型,而不用传入迭代器类型,或许这就是ranges的魅力所在。 static_assert(std::is_same_v<std::ranges::sentinel_t<decltype(v)>,
decltype(end(v))>); // OK
// 获取哨兵类型。 static_assert(std::is_same_v<std::ranges::range_reference_t<decltype(v)>,
decltype(v[0])>); // OK, both are int&
static_assert(std::is_same_v<std::ranges::range_reference_t<decltype(v)>,
std::remove_reference_t<decltype(v[0])>>); // Error, int& and int static_assert(std::is_same_v<std::ranges::range_value_t<decltype(v)>,
std::remove_reference_t<decltype(v[0])>>); // OK, both are int
static_assert(std::is_same_v<std::ranges::range_value_t<decltype(v)>,
decltype(v[0])>); // Error, int and int& static_assert(std::is_same_v<std::ranges::range_size_t<decltype(v)>,
std::size_t>); // OK static_assert(std::is_same_v<std::ranges::range_difference_t<decltype(v)>,
std::ptrdiff_t>); // OK static_assert(std::is_same_v<std::ranges::range_rvalue_reference_t<decltype(v)>,
decltype(std::move(v[0]))>); // OK static_assert(std::is_same_v<std::ranges::borrowed_iterator_t<decltype(v)>,
std::ranges::dangling>); // OK
static_assert(std::is_same_v<std::ranges::borrowed_subrange_t<decltype(v)>,
std::ranges::dangling>); // OK
}

Generic Types of Iterators

  回到迭代器这一话题,为了更好的支持新的迭代器类型特征,你应该用如下的方式来代替传统的类型萃取。

#include <vector>
#include <ranges>
#include <type_traits>
#include <iterator> int main() {
std::vector v{1, 2, 3};
using iterator_type = std::vector<int>::iterator; static_assert(std::is_same_v<std::iter_value_t<std::ranges::iterator_t<decltype(v)>>, int>);
static_assert(std::is_same_v<std::iter_reference_t<std::ranges::iterator_t<decltype(v)>>, int&>);
static_assert(std::is_same_v<std::iter_rvalue_reference_t<std::ranges::iterator_t<decltype(v)>>, int&&>);
static_assert(std::is_same_v<std::iter_difference_t<std::ranges::iterator_t<decltype(v)>>, std::ptrdiff_t>); using type1 = std::common_reference_t<int, int>; // int
using type2 = std::common_reference_t<int&, int>; // int
using type3 = std::common_reference_t<int&, int&>; // int&
using type4 = std::common_reference_t<int&, int&&>; // const int&
using type5 = std::common_reference_t<int&&, int&&>; // int&&
}

  common_reference_t过于复杂,暂且先跳过。可以看到,这也是萃取类型的一种方式,只不过写法不同罢了。话说回来,std::ranges::range_value_t<Rg>其实就是std::iter_value_t<std::ranges::iterator_t<Rg>>的简化。

New Functional Types

  std::identity是一个函数对象,返回对象本身,可以搭配ranges的算法一起使用。

#include <iostream>
#include <functional>
#include <vector>
#include <ranges>
#include <algorithm> int main() {
std::vector v{1, 2, 3};
auto pos = std::ranges::find(v, 9, [](auto x) { return x * x; });
if (pos != end(v))
std::cout << "Exist\n"; auto pos2 = std::ranges::find(v, 3, std::identity{});
if (pos2 != end(v))
std::cout << "Exist\n"; auto pos3 = std::ranges::find(v, 3);
if (pos3 != end(v))
std::cout << "Exist\n";
}

  pos处传入一个lambda表达式,对容器当中的每一个元素进行平方,然后返回对应的迭代器。pos2处传入的正是std::identity,即对象自身,相当于不对原容器进行任何的具体操作,它跟pos3本质上是相同的。

  std::compare_three_way也是一个函数对象,它与<=>这个运算符有关联。这个运算符有个有意思的名字,叫宇宙飞船运算符,因为它的形状长得像宇宙飞船。这是C++20比较有意思的一个特性。

#include <iostream>
#include <type_traits>
#include <functional> int main() {
int a{3}, b{4};
auto result = (a <=> b); if (result < 0)
std::cout << "a < b\n";
else if (result == 0)
std::cout << "a == b\n";
else
std::cout << "a > b\n";
}

Other New Types for Dealing with Iterators

  C++20,还有更多的值得探索......

New Type Functions/Utilities for Dealing with Ranges in C++20的更多相关文章

  1. 利用Azure Functions和k8s构建Serverless计算平台

    题记:昨晚在一个技术社区直播分享了"利用Azure Functions和k8s构建Serverless计算平台"这一话题.整个分享分为4个部分:Serverless概念的介绍.Az ...

  2. Oracle PL/SQL中如何使用%TYPE和%ROWTYPE

    1. 使用%TYPE 在许多情况下,PL/SQL变量可以用来存储在数据库表中的数据.在这种情况下,变量应该拥有与表列相同的类型.例如,students表的first_name列的类型为VARCHAR2 ...

  3. Oracle开发专题之:%TYPE 和 %ROWTYPE

    1. 使用%TYPE 在许多情况下,PL/SQL变量可以用来存储在数据库表中的数据.在这种情况下,变量应该拥有与表列相同的类型.例如,students表的first_name列的类型为VARCHAR2 ...

  4. [转]Oracle开发专题之:%TYPE 和 %ROWTYPE

    本文转自:http://www.cnblogs.com/kingjiong/archive/2009/02/19/1393837.html 1. 使用%TYPE 在许多情况下,PL/SQL变量可以用来 ...

  5. Oracle :%TYPE 和 %ROWTYPE

    1. 使用%TYPE 在许多情况下,PL/SQL变量可以用来存储在数据库表中的数据.在这种情况下,变量应该拥有与表列相同的类型.例如,students表的first_name列的类型为VARCHAR2 ...

  6. 转载:oracle 自定义类型 type / create type

    标签:type create oracle object record 一:Oracle中的类型有很多种,主要可以分为以下几类: 1.字符串类型.如:char.nchar.varchar2.nvarc ...

  7. oracle type类型

    转载 http://blog.sina.com.cn/s/blog_6cfb6b090100ve92.html 转自网络,具体用法我会再细化 1.概念    方法:是在对象类型说明中用关键字  MEM ...

  8. oracle 自定义类型 type / create type

    一:Oracle中的类型有很多种,主要可以分为以下几类: 1.字符串类型.如:char.nchar.varchar2.nvarchar2. 2.数值类型.如:int.number(p,s).integ ...

  9. net programming guid

    Beej's Guide to Network Programming Using Internet Sockets Brian "Beej Jorgensen" Hallbeej ...

  10. Spring框架文档与API(4.3.6版本)

    http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/ Table of Contents I ...

随机推荐

  1. [碎碎念]和ljf老师聊天得到的一些启发,希望大家一起来吹水

    关于写这个小文 和ljf老师聊天得到的一些启发,希望能够总结出来方便回顾,并且我觉得这些想法有一定的普适性,可以供大家参考. 疑问 我的疑问是,我现在主要在做fuzz+pwn,能够进行漏洞挖掘,以及w ...

  2. KVM下windows由IDE模式改为virtio模式蓝屏 开不开机

    KVM安装Windows默认使用的是qemu虚拟化IDE硬盘模式,在这种情况下,IO性能比较低,如果使用virtio的方式可以提高虚拟机IO性能. 于是我想将这台虚拟机迁移到openstack中管理 ...

  3. 每日一库:fsnotify简介

    fsnotify是一个用Go编写的文件系统通知库.它提供了一种观察文件系统变化的机制,例如文件的创建.修改.删除.重命名和权限修改.它使用特定平台的事件通知API,例如Linux上的inotify,m ...

  4. 小白整理了VUEX

    在小白开发的项目中前端使用的是Vue,虽然在日常工作中可以使用Vue进行开发工作.但是没有系统的学习过Vue,对Vue的一些特性和方法使用时常常需要查询资料解决问题,查询资料常常会占用大量时间,尤其对 ...

  5. 这才叫 API 接口设计!

    API 接口设计 Token 设计 Token 是服务端生成的一串字符串,以作客户端进行请求的一个令牌,当第一次登录后,服务器生成一个 Token 便将此 Token 返回给客户端,以后客户端只需带上 ...

  6. JavaScript动态更新数组

    1.数组的创建var arrayObj = new Array(); //创建一个数组var arrayObj = new Array([size]); //创建一个数组并指定长度,注意不是上限,是长 ...

  7. Golang日志新选择:slog

    go1.21中,slog这一被Go语言团队精心设计的结构化日志包正式落地,本文将带领读者上手slog,体会其与传统log的差异. WHY 在日志处理上,我们从前使用的log包缺乏结构化的输出,导致信息 ...

  8. Dubbo3应用开发——架构的演变过程

    Dubbo3应用开发--架构的演变过程 什么是Dubbo 早期Dubbo的定位: 基于Java的高性能,轻量级的RPC框架:SOA[Service-Oriented Architecture ⾯向服务 ...

  9. Solution -「CF 392C」Yet Another Number Sequence

    Description Link. 求 \(\sum_{i=1}^{n}\text{fibonacci}_{i}\times i^{k}=\sum_{i=1}^{n}(F_{i-1}+\text{fi ...

  10. PLC通过Modbus转Profinet网关连接变频器控制电机案例

    在本案例中,通过使用Modbus转Profinet网关(XD-MDPN100),PLC可以通过Profinet协议与变频器进行通信和控制.这样,PLC可以实现对电机的转速调节.启停控制等功能. 同时, ...