简介[编辑]

在几乎所有的机器上,多字节对象都被存储为连续的字节序列。例如在C语言中,一个类型为int的变量x地址为0x100,那么其对应地址表达式&x的值为0x100。且x的四个字节将被存储在存储器0x100, 0x101, 0x102, 0x103位置。[1]

而存储地址内的排列则有两个通用规则。一个多位的整数将按照其存储地址的最低或最高字节排列。如果最低有效位最高有效位的前面,则称小端序;反之则称大端序。在网络应用中,字节序是一个必须被考虑的因素,因为不同机器类型可能采用不同标准的字节序,所以均按照网络标准转化。

例如假设上述变量x类型为int,位于地址0x100处,它的十六进制为0x01234567,地址范围为0x100~0x103字节,其内部排列顺序依赖于机器的类型。大端法从首位开始将是:0x100: 01, 0x101: 23,..。而小端法将是:0x100: 67, 0x101: 45,..

端(endian)的起源[编辑]

endian”一词来源于十八世紀愛爾蘭作家乔纳森·斯威夫特(Jonathan Swift)的小说《格列佛游记》(Gulliver's Travels)。小说中,小人国为水煮蛋该从大的一端(Big-End)剥开还是小的一端(Little-End)剥开而争论,争论的双方分别被称为“大端派”和“小端派”。以下是1726年关于大小端之争历史的描述:

我下面要告诉你的是,Lilliput和Blefuscu这两大强国在过去36个月里一直在苦战。战争开始是由于以下的原因:我们大家都认为,吃鸡蛋前,原始的方法是打破鸡蛋较大的一端,可是当今皇帝的祖父小时候吃鸡蛋,一次按古法打鸡蛋时碰巧将一个手指弄破了。因此他的父亲,当时的皇帝,就下了一道敕令,命令全体臣民吃鸡蛋时打破鸡蛋较小的一端,违令者重罚。老百姓们对这项命令极其反感。历史告诉我们,由此曾经发生过6次叛乱,其中一个皇帝送了命,另一个丢了王位。这些叛乱大多都是由Blefuscu的国王大臣们煽动起来的。叛乱平息后,流亡的人总是逃到那个帝国去寻求避难。据估计,先后几次有11000人情愿受死也不肯去打破鸡蛋较小的一端。关于这一争端,曾出版过几百本大部著作,不过大端派的书一直是受禁的,法律也规定该派任何人不得做官。”
— 《格列夫游记》 第一卷第4章 蒋剑锋(译)

1980年,丹尼·科恩(Danny Cohen),一位网络协议的早期开发者,在其著名的论文"On Holy Wars and a Plea for Peace"中,为平息一场关于字节该以什么样的顺序传送的争论,而第一次引用了该词。[2]

字节顺序[编辑]

在哪种字节顺序更合适的问题上,人们表现得非常情绪化,实际上,就像鸡蛋的问题一样,没有技术上的原因来选择字节顺序规则,因此,争论沦为关于社会政治问题的争论,只要选择了一种规则并且始终如一地坚持,其实对于哪种字节排序的选择是任意的。

对于单一的字节(a byte),大部分处理器以相同的顺序处理位元(bit),因此单字节的存放方法和传输方式一般相同。

对于多字节数据,如整数(32位机中一般占4字节),在不同的处理器的存放方式主要有两种,以内存中0x0A0B0C0D的存放方式为例,分别有以下几种方式:

注: 0x前缀代表十六进制。

大端序[编辑]

大端序(英:big-endian)或稱大尾序

  • 数据以8bit为单位:
地址增长方向  →
... 0x0A 0x0B 0x0C 0x0D ...

示例中,最高位字节是0x0A 存储在最低的内存地址处。下一个字节0x0B存在后面的地址处。正类似于十六进制字节从左到右的阅读顺序。

  • 数据以16bit为单位:
地址增长方向  →
... 0x0A0B 0x0C0D ...

最高的16bit单元0x0A0B存储在低位。

小端序[编辑]

小端序(英:little-endian)或稱小尾序

  • 数据以8bit为单位:
地址增长方向  →
... 0x0D 0x0C 0x0B 0x0A ...

最低位字节是0x0D 存储在最低的内存地址处。后面字节依次存在后面的地址处。

  • 数据以16bit为单位:
地址增长方向  →
... 0x0C0D 0x0A0B ...

最低的16bit单元0x0C0D存储在低位。

  • 更改地址的增长方向:

当更改地址的增长方向,使之由右至左时,表格更具有可阅读性。

←  地址增长方向
... 0x0A 0x0B 0x0C 0x0D ...

最低有效位(LSB)是0x0D 存储在最低的内存地址处。后面字节依次存在后面的地址处。

←  地址增长方向
... 0x0A0B 0x0C0D ...

最低的16bit单元0x0C0D存储在低位。

一般来说,x86 系列 CPU 都是 little-endian 的字节序,PowerPC 通常是 big-endian,网络字节顺序也是 big-endian还有的CPU 能通过跳线来设置 CPU 工作于 Little endian 还是 Big endian 模式。

https://zh.wikipedia.org/wiki/%E5%AD%97%E8%8A%82%E5%BA%8F

https://www.cnblogs.com/luxiaoxun/archive/2012/09/05/2671697.html

字节序:大端和小端(Big endian and Little endian)(转自维基百科)的更多相关文章

  1. linux网路编程:字节序(大端、小端、网络、主机)

    字节序:就是数据在内存中的存放顺序,也可称之为端模式. 大端模式和小端模式的定义 1) Little-Endian就是低位字节排放在内存的低地址端,高位字节排放在内存的高地址端. 2) Big-End ...

  2. js arrayBuffer 字节序问题,小端法,大端法

    原文博客 { var buffer = new ArrayBuffer(2) var bytes = new Uint16Array(buffer) bytes[0] = (65 << 8 ...

  3. 用C语言,如何判断主机是 大端还是小端(字节序)

    所谓大端就是指高位值在内存中放低位地址,所谓小端是指低位值在内存中放低位地址.比如 0x12345678 在大端机上是 12345678,在小端机上是 78564312,而一个主机是大端还是小端要看C ...

  4. C/C++字节序(大端/小端)判断

    C/C++大端小端判断 说的是变量的高字节.低字节在内存地址中的排放顺序. 变量的高字节放到内存的低地址中(变量的低字节放到内存的高地址中)==>大端 变量的高字节放到内存的高地址中(变量的低字 ...

  5. 关于byte[]字节传输的大端和小端小议

    当前的存储器,多以byte为访问的最小单元,当一个逻辑上的地址必须分割为物理上的若干单元时就存在了先放谁后放谁的问题,于是端(endian)的问题应运而生了,对于不同的存储方法,就有大端(big-en ...

  6. 大端模式&小端模式、主机序&网络序、入栈地址高低问题

    一.大端模式&小端模式 所谓的“大端模式”,是指数据的低位(就是权值较小的后面那几位)保存在内存的高地址中,而数据的高位,保存在内存的低地址中,这样的存储模式有点儿类似于把数据当作字符串顺序处 ...

  7. 大端和小端(Big endian and Little endian)

    一.大端和小端的问题 对于整型.长整型等数据类型,Big endian 认为第一个字节是最高位字节(按照从低地址到高地址的顺序存放数据的高位字节到低位字节):而 Little endian 则相反,它 ...

  8. 大端和小端(big endian little endian)

    一.大端和小端的问题 对于整型.长整型等数据类型,Big endian 认为第一个字节是最高位字节(按照从低地址到高地址的顺序存放数据的高位字节到低位字节):而 Little endian 则相反,它 ...

  9. 03大端和小端(Big endian and Little endian)

    1.大端和小端的问题 ​ 对于整型.长整型等数据类型,Big endian 认为第一个字节是最高位字节(按照从低地址到高地址的顺序存放数据的高位字节到低位字节),而 Little endian 则相反 ...

  10. 整型,长整型,无符号整型等 大端和小端(Big endian and Little endian)

    一.大端和小端的问题 对于整型.长整型.无符号整型等数据类型,Big endian 认为第一个字节是最高位字节(按照从低地址到高地址的顺序存放数据的高位字节到低位字节):而 Little endian ...

随机推荐

  1. nrm工具

    nrm 工具 nrm(npm registry manager)是npm镜像源管理工具.可快速帮助查看.切换.管理npm镜像源. 安装 npm install -g nrm 查看 nrm ls 切换 ...

  2. MAUI Blazor 显示本地图片的新思路

    前言 好久没写文章了,水一篇 关于MAUI Blazor 显示本地图片这个问题,有大佬发过了. 就是 token 大佬的那篇 Blazor Hybrid (Blazor混合开发)更好的读取本地图片 主 ...

  3. 我真的想知道,AI框架跟计算图什么关系?PyTorch如何表达计算图?

    目前主流的深度学习框架都选择使用计算图来抽象神经网络计算表达,通过通用的数据结构(张量)来理解.表达和执行神经网络模型,通过计算图可以把 AI 系统化的问题形象地表示出来. 本节将会以AI概念落地的时 ...

  4. 阿里如何实现秒级百万TPS?搜索离线大数据平台架构解读

    ★ 淘宝搜索阶段 在2008-2012这个阶段,我们重点支持淘宝搜索的业务发展,随着淘宝商品量的不断增加,逐步引入Hadoop.Hbase等开源大数据计算和存储框架,实现了搜索离线系统的分布式化,有力 ...

  5. FreeBSD 内核模块和硬盘相关

    查看已加载的内核模块 使用命令:kldstat 加载驱动: kldload xx 查看识别到的硬盘 使用命令:dmesg | grep sector freeBSD 查看硬件信息 使用命令:dmesg ...

  6. linux 内核的ksm机制

    KSM(Kernel Samepage Merging),是Linux内核中的一种内存优化机制,它能够通过将多个应用程序中的相同内存页合并,实现虚拟内存的节约.KSM通过比较不同进程间的虚拟内存页,如 ...

  7. 解决: better-scroll.esm.js?f40f:180 [BScroll warn]: EventEmitter has used unknown event type: "pullingUp"

    改为这样,把所有值设为true mounted() { // 滚动条 this.scroll = new BScroll(this.$refs.wrapper, { click: true, obse ...

  8. pandas 生成新的Dataframe

    选择某些列 import pandas as pd # 从Excel中读取数据,生成DataFrame数据 # 导入Excel路径和sheet name df = pd.read_excel(exce ...

  9. Java中的线程池使用及原理

    开篇-为什么要使用线程池? ​ Java 中的线程池是运用场景最多的并发框架,几乎所有需要异步或并发执行任务的程序都可以使用线程池.在开发过程中,合理地使用线程池能够带来 3 个好处. ​ 第一:降低 ...

  10. Cilium系列-9-主机路由切换为基于 BPF 的模式

    系列文章 Cilium 系列文章 前言 将 Kubernetes 的 CNI 从其他组件切换为 Cilium, 已经可以有效地提升网络的性能. 但是通过对 Cilium 不同模式的切换/功能的启用, ...