五子棋AI:实现逻辑与相关背景探讨(下)
前文回顾
在上篇文章中,我们约定了一种衡量格子价值的方式,如下表。
| 综合价值排序 | 己方价值 | 敌方价值 | 对应的奖励数值 |
|---|---|---|---|
| 1 | Lv1 | ? | \(2^{20}\) |
| 2 | ? | Lv1 | \(2^{16}\) |
| 3 | Lv2 | ? | \(2^{12}\) |
| 4 | ? | Lv2 | \(2^{8}\) |
| 5 | Lv3 | ? | \(2^{4}\) |
| 6 | Lv4 | ? | \(2^{0}\) |
在该表中,对不同的情形,设计了不同的奖励数值,这些数值大多是采用经验公式,人为估计的数值,并不是最优良的数值。同样的,在上表中的除前两类为,其余都可根据实际情况进一步的细分权重,这里给出一个样例供大家参考/理解:
| 综合价值排序 | 己方价值 | 敌方价值 | 对应的奖励数值 |
|---|---|---|---|
| 3.1 | Lv2 | Lv2 | \(2^{13}\) |
| 3.2 | Lv2 | Lv3 | \(2^{12}\) |
| 3.3 | Lv2 | Lv4 | \(2^{11}\) |
同样是能构成杀招(Lv2等级),能顺便堵死对面杀招/优良的位置自然是更好的。
在附录中给出了详细的权重表
本篇中我们将基于遗传算法讨论如何让AI学习奖励值。
遗传算法概述
遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传机制的优化算法。它用于寻找问题的最优解,特别适用于复杂的优化问题和搜索问题。遗传算法基于达尔文的自然选择理论,通过模拟生物进化过程来逐步改进解决方案。
遗传算法的基本步骤如下:
初始化:创建一个初始种群,种群中的每一个个体(通常称为染色体或解)是问题的一个潜在解。
评估:计算种群中每个个体的适应度值,这通常通过一个目标函数来进行,适应度值表示个体的优劣。
选择:根据适应度值选择个体进行繁殖,优良个体有更高的概率被选择,以生成下一代种群。
交叉(Crossover):通过将两个个体的部分基因交换,生成新的个体。这一步模仿了生物的交配过程,可以产生新的解。
变异(Mutation):在某些个体中随机改变基因,以引入新的基因变异。这一步帮助算法跳出局部最优解,增加解的多样性。
替换:将一部分个体替换为最优良的个体,保留最优秀的基因,使得种群的型状不会出现下降或震荡。
终止:判断算法是否满足终止条件,如达到最大迭代次数或找到足够好的解。如果满足条件,算法终止,返回最优解;否则,返回第2步。
遗传算法实现思路
初始化
本文所设计的AI决策方案共包含12个参数,其中11个是奖励权重\(R_i\),1个是对劣质选项接受度\(K\)。
我们可以定义\(N\)个智能体,分别用初始权重进行初始化,一般来说,\(N\)可以取10~100,最好选择偶数,否则会有一些不必要的麻烦。
初始化过程可以用数学公式表示为:
\]
其中,\(W_0\)表示初始权重,\(W_i^{t=0}\)表示第\(t\)代的第\(i\)个个体。
评估
本例中,采用让AI对弈的方式,根据AI在棋局中的表现评估AI得分,具体流程如下:
- 生成一个从1到N的随机排列,并将其按顺序分配给AI
- 将序号为1、3、5、...的AI与序号为2、4、6、...的AI对弈
- 将棋局结果记录到AI得分表内。
- 是否完成\(N_R\)轮对局,倘若未完成,则返回到1。
- 对AI进行排名。
交叉
当完成排名时,让排名后50%的AI及前50%的AI两两组合,其数学公式如下
W_{i}^{t+1}&=W_i^t\times(1-c)+W_{i-50}^t\times c, &N/2 \leq &t \leq N \\
W_{i}^{t+1}&=W_i^t\times(1-c)+W_{i+50}^t\times c, &0 \leq &t \leq N/2
\end{align*}
\]
其中:\(c\)为学习因子(交叉率),表示AI在学习过程中对新知识(权重)的接受程度,\(c\)越大,AI越倾向于接受新权重,\(c\)越小,AI越倾向于保留旧权重。交叉率\(c\)一搬可取\(0.01\sim0.3\)
替换
首先定义局部最优个体和全局最优个体。
局部最优\(W_b^t\):如果一个个体在本轮中的综合成绩排名为第一名(胜场最多),那么称其为局部最优个体。
全局最优\(W_B\):当只进行一轮迭代时,全局最优个体等于局部最优个体,即:\(W_B=W_b^{t=0}\)。当进行了不止一局游戏时,将新的局部最优个体与全局最优个体进行\(N_R\)轮对局,倘若全局最优个体获胜,则其依旧为全局最优个体,倘若其失败,则局部最优个体成为新的全局最优个体。可以用数学公式表示为:
\begin{cases}
W_b^t &\text{if}\;W_b^t \;\text{win},\\
W_B &\text{otherwise}.
\end{cases}
\]
为了保留最优的性状,将排名靠后的部分个体替换为全局最优个体,记替换率为\(s\),一般取\(0.02\sim 0.1\)
变异
在变异过程中,个体的基因发生随机的改变。定义变异系数\(m\),其绝对了变异的程度,一般来说\(m\)的范围在\(0.01\sim0.1\)数学公式如下:
\]
其中\(W_{i,j}^{t}\)表示第\(t\)代的第\(i\)个个体的第\(j\)个权重,\(m_j\)是在\((-m,m)\)内的随机数。
流程汇总
以下给出遗传算法学习的流程
初始化种群
创建棋局,各个个体互相对战,统计得分并进行排名
判断是否达到停止条件,若不是则继续。
依排名将个体两两匹配,进行交叉操作
将排名靠后的个体分别替换为局部最优个体和全局最优个体
进行变异操作
转至步骤2
附录
行为优先级
- Lv1:下子直接取胜,或在一回合内取胜。
- Lv2:下在大概率在若干回合内取胜。
- Lv3:能够迫使对方一直防御。
- Lv4:收益较低。
初始权重表
| 综合价值排序 | 己方价值 | 敌方价值 | 对应的奖励数值 |
|---|---|---|---|
| 1 | Lv1 | ? | \(2^{20}\) |
| 2 | ? | Lv1 | \(2^{16}\) |
| 3.1 | Lv2 | Lv2 | \(2^{13}\) |
| 3.2 | Lv2 | Lv3 | \(2^{12}\) |
| 3.3 | Lv2 | Lv4 | \(2^{11}\) |
| 4.1 | Lv3 | Lv2 | \(2^{9}\) |
| 4.2 | Lv4 | Lv2 | \(2^{8}\) |
| 5.1 | Lv3 | Lv3 | \(2^{6}\) |
| 5.2 | Lv3 | Lv4 | \(2^{4}\) |
| 6.1 | Lv4 | Lv3 | \(2^{2}\) |
| 6.2 | Lv4 | Lv4 | \(2^{0}\) |
符号说明
| 符号 | 意义 | 数值范围 |
|---|---|---|
| \(W\) | 个体(权重) | - |
| \(R\) | 行动的奖励 | - |
| \(K\) | 对劣选项的接受程度 | - |
| \(N\) | 种群大小 | 10~100 |
| \(N_R\) | 评估时的对局轮数 | 10~100 |
| \(T\) | 迭代次数 | 20~500 |
| \(c\) | 交叉率 | 0.01~0.03 |
| \(s\) | 替换率 | 0.02~0.1 |
| \(m\) | 变异率 | 0.01~0.1 |
五子棋AI:实现逻辑与相关背景探讨(下)的更多相关文章
- .NET同步与异步之相关背景知识(六)
在之前的五篇随笔中,已经介绍了.NET 类库中实现并行的常见方式及其基本用法,当然.这些基本用法远远不能覆盖所有,也只能作为一个引子出现在这里.以下是前五篇随笔的目录: .NET 同步与异步之封装成T ...
- 五子棋AI清月连珠开源
经过差不多两年的业余时间学习和编写,最近把清月连珠的无禁手部分完善得差不多了.这中间进行了很多思考,也有很多错误认识,到现在有一些东西还没有全面掌握,所以想通过开源于大家共同交流. 最近一直发表一些五 ...
- 使用QT creator实现一个五子棋AI包括GUI实现(8K字超详细)
五子棋AI实现 五子棋游戏介绍 五子棋的定义 五子棋是全国智力运动会竞技项目之一,是具有完整信息的.确定性的.轮流行动的.两个游戏者的零和游戏.因此,五子棋是一个博弈问题. 五子棋的玩法 五子棋有两种 ...
- 五子棋AI大战OC实现
Gobang 五子棋AI大战,该项目主要用到MVC框架,用算法搭建AI实现进攻或防守 一.项目介绍 1.地址: github地址:Gobang 2.效果图: 二.思路介绍 大概说下思路,具体看代码实现 ...
- 五子棋AI教程
https://github.com/Chuck-Ai/gobang 我写了非常详细的中文教程,教你如何一步步编写自己的五子棋AI: 五子棋AI设计教程第二版一:前言 五子棋AI设计教程第二版二:博弈 ...
- 如何使用jMeter发送两个逻辑上相关的HTTP请求
在前一篇文章使用jMeter构造大量并发的随机HTTP请求里我通过jMeter构造了大量的HTTP GET并发请求,对服务器产生了大量读操作. 现在我有另一个需求场景:假设我开发了一个创建Servic ...
- 【五子棋AI循序渐进】——开局库
首先,对前面几篇当中未修复的BUG致歉,在使用代码时请万分小心…………尤其是前面关于VCF\VCT的一些代码和思考,有一些错误.虽然现在基本都修正了,但是我的程序还没有经过非常大量的对局,在这之前,不 ...
- {前端CSS} 语法 Css的几种引入方式 css选择器 选择器的优先级 CSS属性相关 背景属性 边框 CSS盒子模型 清除浮动 overflow溢出属性 定位(position)z-index
前端CSS CSS介绍 CSS(Cascading Style Sheet,层叠样式表)定义如何显示HTML元素,给HTML设置样式,让它更加美观. 当浏览器读到一个样式表,它就会按照这个样式表来对文 ...
- 【五子棋AI循序渐进】——多线程搜索
关于多线程搜索,有很多方法来实现,很多文章推荐基于MTD(F)的方式.好处不言而喻,不过我的程序中采用的是基于PVS的多线程搜索.实现起来主要是这几个方面问题需要解决: 1.置换表的互斥访问. 2.局 ...
- 【五子棋AI循序渐进】关于VCT,VCF的思考和核心代码
前面几篇发布了一些有关五子棋的基本算法,其中有一些BUG也有很多值得再次思考的问题,在框架和效果上基本达到了一个简单的AI的水平,当然,我也是初学并没有掌握太多的高级技术.对于这个程序现在还在优化当中 ...
随机推荐
- 开源免费的专注于建立大型个人知识库推荐-Trilium Notes
Trilium Notes是一个分层的笔记应用程序,专注于建立大型个人知识库. 支持相当丰富的 markdown,包括 mermaid 和 latex,而且即时渲染,和 typora 一样.支持代码类 ...
- WSS SSL HTTPS之间的关系
ssl: secure socket layer 安全套接层,简单来说是一种加密技术,通过它可以在通信的双方上建立一个安全的通信链路,因此数据交互的双方可以安全地通信,而不用担心数据被窃取:wss: ...
- ABC357-C题解
最近一直掉分,谔谔. 分析 发现机房里面除了我以外都用递归写的,那我就来讲一种非递归的吧. 考虑第 \(i\) 级地毯拆成九块以后其实就是八块第 \(i-1\) 级地毯与一块大小为 \(3^{i-1} ...
- 一文全懂:Linux磁盘分区
一.物理设备的命名规则 在 Linux 系统中一切都是文件,硬件设备也不例外.所有的硬件设备文件都在/dev文件夹中. 硬件 在Linux内的文件名 SCSI/SATA/USB /dev/sd[a-p ...
- Python在linux系统和window系统相对路径导致找不到文件报错
文件路径 project1 -dir1 --test1.py -dir2 --test2.text -main.py test1.py from pathlib import Path "& ...
- selenium高亮显示定位到的页面元素
from selenium import webdriver import unittest,time def highLightElement(driver,element): #封装好的高亮显示页 ...
- php 后台执行进程
一些业务需要长期在后台执行进程 下面用thinkphp5.1做演示 在command文件夹下建立进程 cd 到 lunar_php项目根目录 执行 php think hello 如果想后台执行 no ...
- Mysql函数12-DATE_FORMAT
DATE_FORMAT函数用于日期格式的转换. 1.sql查询出一列create_time select create_time from goods where id=65 2.让create_ti ...
- 【Windows】Win10 20H2版本 管理员身份问题
问题描述: 从之前的1909版本升级过来的,在一开始就是管理员身份,升级之后还是管理员身份没错 但是打开一些软件又会开始提示是否安全,还有C盘访问权限警告. 解决办法: 参考方案地址 http://w ...
- 【Tutorial C】04 基本输入输出
输出单个字符 putchar('a'); // 字符输出函数,其功能是在终端(显示器)输出单个字符. putchar('\n'); // 支持转义换行 putchar(77); // 可以直接注入AS ...