hdoj Let the Balloon Rise
/*Let the Balloon Rise
Problem Description
Contest time again! How excited it is to see balloons floating around.
But to tell you a secret, the judges' favorite time is guessing the most popular problem.
When the contest is over, they will count the balloons of each color and find the result.
This year, they decide to leave this lovely job to you.
Input
Input contains multiple test cases. Each test case starts with a number
N (0 < N <= 1000) -- the total number of balloons distributed.
The next N lines contain one color each. The color of a balloon is a string of up to
15 lower-case letters.
A test case with N = 0 terminates the input and this test case is not to be processed.
Output
For each case, print the color of balloon for the most popular problem on a single line.
It is guaranteed that there is a unique solution for each test case.
Sample Input
5
green
red
blue
red
red
3
pink
orange
pink
0
Sample Output
red
pink*/
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
# define N 1005
char str[N][15];
int main()
{
int i,j,count[1000],t,n,k;
while(scanf("%d",&n),n!=0)
{
t=0;记着要清零。
for(i=0;i<n;i++)
scanf("%s",str[i]);
memset(count,0,sizeof(int)*1000);//把count都初始为0
for(i=0;i<n;i++)
{
for(j=i+1;j<=n;j++)
{
if(strcmp(str[i],str[j])==0)
{
count[t]++;
}
}
t++;
}
k=0;
for(i=0;i<t;i++)
{
if(count[i]>=count[k])
k=i;
}
printf("%s\n",str[k]);
}
return 0;
}
hdoj Let the Balloon Rise的更多相关文章
- hdu 1004 Let the Balloon Rise
Let the Balloon Rise Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Oth ...
- Let the Balloon Rise 分类: HDU 2015-06-19 19:11 7人阅读 评论(0) 收藏
Let the Balloon Rise Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Oth ...
- HDU 1004 Let the Balloon Rise map
Let the Balloon Rise Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Oth ...
- HDU1004 Let the Balloon Rise(map的简单用法)
Let the Balloon Rise Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- HD1004Let the Balloon Rise
Let the Balloon Rise Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- Let the Balloon Rise(map)
Let the Balloon Rise Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Oth ...
- akoj-1073- Let the Balloon Rise
Let the Balloon Rise Time Limit:1000MS Memory Limit:65536K Total Submit:92 Accepted:58 Description ...
- HDU 1004 Let the Balloon Rise【STL<map>】
Let the Balloon Rise Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Oth ...
- Let the Balloon Rise(水)
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1004 Let the Balloon Rise Time Limit: 2000/1000 MS (J ...
随机推荐
- cogs 304. [NOI2001] 方程的解数(meet in the middle)
304. [NOI2001] 方程的解数 ★★☆ 输入文件:equation1.in 输出文件:equation1.out 简单对比时间限制:3 s 内存限制:64 MB 问题描述 已 ...
- [ReactVR] Animate Text, Images, Views, and 3D Elements Using the Animated Library in React VR
Motion is an important aspect of a complete immersive experience, therefor we are going to look into ...
- linux /proc/cpuinfo 文件描写叙述
processor :系统中逻辑处理核的编号.对于单核处理器.则课觉得是其CPU编号,对于多核处理器则能够是物理核.或者使用超线程技术虚拟的逻辑核 vendor_id :CPU制造商 cpu fami ...
- JStorm中的并行( parallelismction )介绍
JStorm中的并行( parallelismction )介绍 JStrom中.一个计算任务通过多台机器使得计算分解为多个独立并行执行在集群内执行的任务(tasks).从而得到水平扩展. JStor ...
- 苹果要求全部新app以及版本号更新必须支持iOS 8 SDK和64-bit
2014年10月20日.苹果官方公布了一则新闻,新闻内容例如以下: Starting February 1, 2015, new iOS apps uploaded to the App Store ...
- hdu-3401-Trade-单调队列优化的DP
单调队列入门题... dp[i][j]:第i天.手中拥有j个股票时,获得的最大利润. 若第i天不买不卖:dp[i][j]=max(dp[i][j],dp[i-1][j]); 若第i天买 ...
- ES task管理
Task Management API The Task Management API is new and should still be considered a beta feature. Th ...
- PyCharm基本设置、常用快捷键
1. 下载安装 PyCharm官方下载地址: https://www.jetbrains.com/pycharm/download/index.html#section=windows 安装完成后在 ...
- event内存泄漏
C#内存泄漏--event内存泄漏 内存泄漏是指:当一块内存被分配后,被丢弃,没有任何实例指针指向这块内存, 并且这块内存不会被GC视为垃圾进行回收.这块内存会一直存在,直到程序退出.C#是托管型代码 ...
- [jzoj 5178] [NOIP2017提高组模拟6.28] So many prefix? 解题报告(KMP+DP)
题目链接: https://jzoj.net/senior/#main/show/5178 题目: 题解: 我们定义$f[pos]$表示以位置pos为后缀的字符串对答案的贡献,答案就是$\sum_{i ...