[笔记-图论]Bellman-Ford
用于求可带负权的单源有向图
优化后复杂度O(nm)
如果图中存在负环,就不存在最小路
这种情况下,就一定会有一个顶点被松弛多于n-1次,Bellman-Ford可直接判断出来
我在网上看到SPFA,发现就是优化后的Bellman-Ford算法,没什么特别的
常见有三种版本的BellmanFord:原版,队列优化Bellman,栈优化Bellman
看起来栈优化的Bellman比较快速?不存在负权下,直接用Dijskra即可
模板
// Bellman-Ford
// to check negtive circle, if not exists return minumum distance
//
// Description:
// 1. do n-1 times relax for all edges (or check if dis[u]=dis[v]+dis[v, u])
//
// Details:
// 1. use queue to push and get the vertax
// 2. use cnt[verIdx] to count n-1 for each vertax
// 3. use inq[verIdx] to check if in queue(when process u, set inq[u] false)
// 4. despite of inq, do relax(but que.push)
// 5. initialize edge, G, dis and que
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <queue>
using namespace std;
const int maxn=205, INF=0x3f3f3f3f;
struct Edge{
int from, to, dis;
Edge(int from=0, int to=0, int dist=0):
from(from), to(to), dist(dist) {}
};
vector<Edge> edge;
vector<int> G[maxn+5];
int n;
void AddEdge(int from, int to, int val){
edge.push_back(Edge(from, to, val));
G[from].push_back(edge.size()-1);
edge.push_back(Edge(to, from, val));
G[to].push_back(edge.size()-1);
}
int BellmanFord(int st){
int ans=0, cnt[maxn+5]={0}, dist[maxn+5];
bool inq[VerMax]={0};
memset(dist, INF, sizeof(dist));
queue<int> que;
que.push(st);
inq[st]=true; dist[st]=0;
while (que.size()){
int from=que.front(); que.pop();
inq[from]=false;
for (int i=0; i<G[from].size(); i++){
Edge &e=edge[G[from][i]]; int to=e.to;
if (dis[to]<=dis[from]+e.dis) continue;
dis[to]=dis[from]+e.dis;
if (inq[to]) continue;
que.push(to); inq[to]=true;
// if (++cnt[to]>verSize) return -1;
// why n+1? (this code from purple book P363)
if (++cnt[to]>n-1) return -1;
}
}
return ans;
}
注意
- 需初始化dist为INF,inq为false,cnt为0;还有edge, G
- 不要忘了inq, cnt数组
- 考虑dist[k]==INF,为不存在路径
例题
二进制状态,隐式图搜索
UVA-658 It's not a Bug, it's a Feature!
[笔记-图论]Bellman-Ford的更多相关文章
- Bellman - Ford 算法解决最短路径问题
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...
- ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)
两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可 ...
- poj1860 bellman—ford队列优化 Currency Exchange
Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 22123 Accepted: 799 ...
- uva 558 - Wormholes(Bellman Ford判断负环)
题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...
- Bellman—Ford算法思想
---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...
- Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】
题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...
- 图论算法——最短路径Dijkstra,Floyd,Bellman Ford
算法名称 适用范围 算法过程 Dijkstra 无负权 从s开始,选择尚未完成的点中,distance最小的点,对其所有边进行松弛:直到所有结点都已完成 Bellman-Ford 可用有负权 依次对所 ...
- POJ 2240 Arbitrage (Bellman Ford判正环)
Arbitrage Time Limit: 1000MS Memory Limit: 65536K Total Submissions:27167 Accepted: 11440 Descri ...
- poj1860 兑换货币(bellman ford判断正环)
传送门:点击打开链接 题目大意:一个城市有n种货币,m个货币交换点,你有v的钱,每个交换点只能交换两种货币,(A换B或者B换A),每一次交换都有独特的汇率和手续费,问你存不存在一种换法使原来的钱更多. ...
随机推荐
- Win7 利用批处理文件结束进程
@echo offtitle 结束进程正在进行... ::结束进程TeamViewer.exewmic process where name="TeamViewer.exe" ca ...
- 问题集锦 ~ jQuery
#addClass失败 $target.addClass('show'); show 这个单词可能和内部某处起冲突了吧,有时成功有时失败,只能换个class名了,难受……
- (转载)Mac下使用Android Studio 获取 SHA1和MD5
Mac下使用Android Studio 获取 SHA1和MD5 2015-08-10 15:38 1776人阅读 评论(1) 收藏 举报 分类: Android(14) 版权声明:本文为博主原创 ...
- STM8S103-STVD建立汇编代码项目
转载:http://blog.csdn.net/u010093140/article/details/49983397 STVD本来就比较少人用,STVD汇编就更少人用了,不过STM8汇编我自己还是满 ...
- Codeforces Round #289 Div 2
A. Maximum in Table 题意:给定一个表格,它的第一行全为1,第一列全为1,另外的数满足a[i][j]=a[i-1][j]+a[i][j-1],求这个表格中的最大的数 a[n][n]即 ...
- Failed to connect to server
设置LR浏览器代理解决Failed to connect to server,Connection timed out问题. 虚拟机中,接口测试简单的Get请求,一直提示Failed to conne ...
- Swift 闭包中 self? 的由来
class UIViewSpringAnimator: SwipeAnimator { // 动画完成的闭包 var completion:((Bool) ->Void)? func addCo ...
- Python读取Matlab的.mat文件
参考网站: https://blog.csdn.net/rumswell/article/details/8545087 数据: R 22*22 double 部分截图如下: 使用sicpy.io即可 ...
- JVM内存管理简单剖析
Java是一个跨平台语言,屏蔽操作系统的差异,无需关心复杂内存管理,做到编写一次到处运行.其强大的能力源于Java Virtual Machine (虚拟机)默默的付出.代码运行在虚拟机之上,虚拟机运 ...
- 让div垂直居中
参考链接:https://www.cnblogs.com/softwarefang/p/6095806.html 以前我的方法总是比较粗暴,纯粹通过margin来实现,这个方法的缺点不仅在于需要多次微 ...