Problem Description

大学英语四级考试就要来临了,你是不是在紧张的复习?也许紧张得连短学期的ACM都没工夫练习了,反正我知道的Kiki和Cici都是如此。当然,作为在考场浸润了十几载的当代大学生,Kiki和Cici更懂得考前的放松,所谓“张弛有道”就是这个意思。这不,Kiki和Cici在每天晚上休息之前都要玩一会儿扑克牌以放松神经。“升级”?“双扣”?“红五”?还是“斗地主”?当然都不是!那多俗啊~
作为计算机学院的学生,Kiki和Cici打牌的时候可没忘记专业,她们打牌的规则是这样的:
1、  总共n张牌;
2、  双方轮流抓牌;
3、  每人每次抓牌的个数只能是2的幂次(即:1,2,4,8,16…)
4、  抓完牌,胜负结果也出来了:最后抓完牌的人为胜者;
假设Kiki和Cici都是足够聪明(其实不用假设,哪有不聪明的学生~),并且每次都是Kiki先抓牌,请问谁能赢呢?
当然,打牌无论谁赢都问题不大,重要的是马上到来的CET-4能有好的状态。
Good luck in CET-4 everybody!

Input

输入数据包含多个测试用例,每个测试用例占一行,包含一个整数n(1<=n<=1000)。

Output

如果Kiki能赢的话,请输出“Kiki”,否则请输出“Cici”,每个实例的输出占一行。

Sample Input

1
3

Sample Output

Kiki
Cici
解题思路:找找规律,先举几个栗子:
当n=1时,先手必赢;
当n=2时,先手必赢;
当n=3时,无论先手抓多少张牌,后手必赢;
当n=4时,只要先手抓1张牌,接下来就转化成n=3这个局面,即先手必赢;
当n=5时,只要先手抓2张牌,接下来就转化成n=3这个局面,即先手必赢;
当n=6时,①当先手抓1张牌时,接下来就转化成n=5这个局面,即后手必赢;②当先手抓2张牌时,后手可以一次性抓走剩下的4张牌,即后手必赢;③当先手抓4张牌时,后手同样可以一次性取完剩下的2张牌,即后手必赢;所以无论先手抓多少张牌,后手必赢;
当n=7时,只要先手抓走1张牌,接下来就转化成n=6这个局,即先手必赢;
......
再多举几个栗子,我们可以发现只要n是3的倍数,则后手必赢;反之,先手必赢,因此可以用以下简单代码水过:
 #include<bits/stdc++.h>
using namespace std;
int main()
{
int n;
while(cin>>n){
if(n%)cout<<"Kiki"<<endl;//不是3的倍数,先手必赢
else cout<<"Cici"<<endl;//是3的倍数,后手必赢
}
return ;
}

这题还可以用SG值解决,所谓的SG值就是记录当前状态是N是P的具体值,N-position表示必赢状态(其SG值不为0),P-position表示必输状态(其SG值为0)。下面介绍怎么求SG值:首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示不属于mex这个集合的最小非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。

对于一个给定的有向无环图,定义关于图的每个顶点的Sprague-Grundy函数g如下:g(n)=mex{ g(m) | m是n的后继 },这里的g(n)即sg[n]

拿本题的栗子来讲:首先有sg[0]=0,f[]={1,2,4...};(f数组存放可以抓走扑克牌的张数,并且按升序存放)

当n=1时,先手可以抓走1-f{1}张牌,剩余{0}张,mex{sg[0]}={0},故sg[1]=1;

当n=2时,先手可以抓走2-f{1,2}张牌,剩余{1,0}张,mex{sg[1],sg[0]}={1,0},故sg[2]=2;

当n=3时,先手可以抓走3-f{1,2}张牌,剩余{2,1}张,mex{sg[2],sg[1]}={2,1},故sg[3]=0;

当n=4时,先手可以抓走4-f{1,2,4}张牌,剩余{3,2,0}张,mex{sg[3],sg[2],sg[0]}={0,2,0},故sg[4]=1;

当n=5时,先手可以抓走5-f{1,2,4}张牌,剩余{4,3,1}张,mex{sg[4],sg[3],sg[1]}={1,0,1},故sg[5]=2;

以此类推.....

   n  0 1 2 3 4 5 6 7 8 9....

sg[n] 0 1 2 0 1 2 0 1 2 ....

由上述实例我们就可以得到1~n的SG值的计算步骤,如下所示:
①、使用f数组保存可抓取的扑克牌张数。
②、然后使用vis数组来标记当前状态n的后继m状态。
③、最后模拟mex运算,也就是我们在集合mex中查找未被标记值的最小值,将其赋值给sg(n)。
④、不断的重复 ② - ③ 的步骤,即可完成计算1~n的SG值。

关于3种SG值计算方法(重点):

1、可选步数为1~m的连续整数,直接取模即可,SG(x) = x % (m+1);
2、可选步数为任意步,SG(x) = x;
3、可选步数为一系列不连续的数,用get_SG()计算 

此题就是选取第3种方法来计算SG值。

AC代码(非递归版本比较好理解):
 #include<bits/stdc++.h>
using namespace std;
const int maxn = ;
int n,f[],sg[maxn];
bool vis[maxn];
//f[]:每次抓牌的个数
//sg[]: 0~n的SG函数值
//vis[]:mex{}
void init(){//初始化
f[] = ;//下标从1开始
for(int i=;i<=;++i)f[i]=f[i-]*;//这里只需枚举到512即可,因为1024已经超过n=1000了
}
void get_SG(){
memset(sg,,sizeof(sg));
for(int i=;i<maxn;++i){
memset(vis,false,sizeof(vis));//每轮到当前i就重新初始化vis都为未访问状态,找出不属于这个集合的最小非负整数
for(int j=;j< && f[j]<=i;++j)//j<11要放在判断条件的前面,不然会出现错误即越界,因为数组长度只有10
vis[sg[i-f[j]]]=true;//i-f[j]为后继状态,vis[sg[i-f[j]]]收录mex集合
for(int j=;j<maxn;++j)//求没有出现在mex集合中的非负最小值
if(!vis[j]){sg[i]=j;break;}
}
}
int main()
{
init();
get_SG();
while(cin>>n){
if(sg[n])cout<<"Kiki"<<endl;//当sg[n]不为0时,即为N-position,此时先手必赢
else cout<<"Cici"<<endl;
}
return ;
}

再贴一下dfs版本代码:

 #include<bits/stdc++.h>
using namespace std;
const int maxn = ;
int n,f[],sg[maxn];
/*
SG值:一个点的SG值就是一个不等于它的后继点的SG的且大于等于零的最小整数。
同mex()函数。简单点来讲就是当前状态离最近一个必败点的距离。距离为0就是必败点
SG(x)=mex(S),S是x的后继状态的SG函数值集合,mex(S)表示不在S内的最小非负整数
SG值是P/N状态的具体化
*/
int mex(int x){//求该点的SG值(采用记忆化搜索)
if(sg[x]!=-)return sg[x];//搜索过了
bool vis[maxn];//vis数组要在此声明,不然会出错,因为这里是递归操作
memset(vis,false,sizeof(vis));
for(int i=;i<=;++i){
int tmp=x-f[i];
if(tmp<)break;//当差值小于0,直接退出
sg[tmp]=mex(tmp);//找sg[tmp]的后继值
vis[sg[tmp]]=true;//回退的时候标记后继sg值标记为true
}
for(int i=;i<=maxn;++i)//每次break退出时就取不属于mex集合的最小非负整数
if(!vis[i]){sg[x]=i;break;}
return sg[x];//返回x的最小非负整数
}
int main()
{
f[]=;
for(int i=;i<=;++i)
f[i]=f[i-]*;//只需枚举到512就行了,因为1024>1000没必要取到
memset(sg,-,sizeof(sg));//初始化为-1,记忆化搜索
while(cin>>n){
if(mex(n))cout<<"Kiki"<<endl;//当sg[n]不为0时即为N-position,先手必赢
else cout<<"Cici"<<endl;
}
return ;
}

更多详解参考一下这篇博文:博弈论 SG函数

题解报告:hdu 1847 Good Luck in CET-4 Everybody!(入门SG值)的更多相关文章

  1. HDU 1847 Good Luck in CET-4 Everybody! (博弈论sg)

    Good Luck in CET-4 Everybody! Problem Description 大学英语四级考试就要来临了,你是不是在紧张的复习?或许紧张得连短学期的ACM都没工夫练习了.反正我知 ...

  2. HDU.1847 Good Luck in CET-4 Everybody! ( 博弈论 SG分析)

    HDU.1847 Good Luck in CET-4 Everybody! ( 博弈论 SG分析) 题意分析 简单的SG分析 题意分析 简单的nim 博弈 博弈论快速入门 代码总览 //#inclu ...

  3. hdu 1847 Good Luck in CET-4 Everybody!(巴什博弈)

    Good Luck in CET-4 Everybody! HDU - 1847 大学英语四级考试就要来临了,你是不是在紧张的复习?也许紧张得连短学期的ACM都没工夫练习了,反正我知道的Kiki和Ci ...

  4. HDU 1847 Good Luck in CET-4 Everybody! (巴什博弈)

    题目链接:HDU 1847 Problem Description 大学英语四级考试就要来临了,你是不是在紧张的复习?也许紧张得连短学期的ACM都没工夫练习了,反正我知道的Kiki和Cici都是如此. ...

  5. hdu 1847 Good Luck in CET-4 Everybody!(sg)

    Good Luck in CET-4 Everybody! Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  6. HDU 1847 Good Luck in CET-4 Everybody!(规律,博弈)

    Good Luck in CET-4 Everybody! Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  7. HDU 1847 Good Luck in CET-4 Everybody!(找规律,或者简单SG函数)

    Good Luck in CET-4 Everybody! Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  8. HDU 1847 Good Luck in CET-4 Everybody!

    题解:巴什博弈,2^k+1=3N或2^k2=3N,所以3N为P-position,3N+r为N-position. #include <cstdio> int main(){ int n; ...

  9. HDU 1847 Good Luck in CET-4 Everybody!(找规律版巴什博奕)

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission( ...

随机推荐

  1. 爬虫解析库BeautifulSoup的一些笔记

    BeautifulSoup类使用   基本元素 说明 Tag 标签,最基本的信息组织单元,分别是<>和</>标明开头和结尾 Name 标签的名字,<p></p ...

  2. CAD在网页中绘制批注

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 3 ...

  3. 洛谷——P1122 最大子树和

    P1122 最大子树和 树形DP,$f[u]$表示以u为根的子树的最大美丽指数 $f[u]+=max(0,f[v])$ 树形DP的基本结构,先搜再DP,这题感觉有点儿贪心的性质,选就要选美丽值> ...

  4. python--(协程 和 I/O多路复用)

    python--(协程 和 I/O多路复用) 一.协程 1. >>>单线程下实现并发, 最大化线程的效率, 检测 IO 并自动切换,程序级别的任务切换, 之前多进程多线程都是系统级别 ...

  5. 第五节:DataFrame聚合函数

  6. BZOJ 1602 USACO 2008 Oct. 牧场行走

    [题解] 要求出树上两点间的距离,树上的边有边权,本来应该是个LCA. 看他数据小,Xjb水过去了...其实也算是LCA吧,一个O(n)的LCA... #include<cstdio> # ...

  7. 关于PyQt5,在pycharm上的安装步骤及使用技巧

    前序 之前学习了一款GUI图形界面设计的Tkinter库,但是经大佬的介绍,PyQT5全宇宙最强,一脸的苦笑 毫不犹豫的选择转战PyQT5,在学习之前需要先安装一些必须程序,在一番查阅后,发现PyQt ...

  8. [HDU3518]Boring counting(后缀数组)

    传送门 求出现超过1次的不重叠子串的个数 根据论文中的方法. 枚举子串的长度 k. 用 k 给 height 数组分组,每一组求解,看看当前组的位置最靠后的后缀和位置最靠前的后缀所差个数是否大于长度, ...

  9. CODEVS1187 Xor最大路径 (Trie树)

    由于权值是在边上,所以很容易发现一个性质:d(x,y)=d(x,root) xor d(y,root). 因为有了这个性质,那么就很好做了.对于每一个点统计到root的距离,记为f 数组. 将f数组里 ...

  10. 如何重启apache2服务

    假设当前Linux用户的apahce安装目录为/usr/local/apache2,那么在命令行终端中使用以下命令启动,停止和重启apache.1. 启动apahce的命令:/usr/local/ap ...