Nim
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5866   Accepted: 2777

Description

Nim is a 2-player game featuring several piles of stones. Players alternate turns, and on his/her turn, a player’s move consists of removing one or more stones from any single pile. Play ends when all the stones have been removed, at which point the last player to have moved is declared the winner. Given a position in Nim, your task is to determine how many winning moves there are in that position.

A position in Nim is called “losing” if the first player to move from that position would lose if both sides played perfectly. A “winning move,” then, is a move that leaves the game in a losing position. There is a famous theorem that classifies all losing positions. Suppose a Nim position contains n piles having k1k2, …, kn stones respectively; in such a position, there are k1 + k2 + … + kn possible moves. We write each ki in binary (base 2). Then, the Nim position is losing if and only if, among all the ki’s, there are an even number of 1’s in each digit position. In other words, the Nim position is losing if and only if the xor of the ki’s is 0.

Consider the position with three piles given by k1 = 7, k2 = 11, and k3 = 13. In binary, these values are as follows:

 111
1011
1101

There are an odd number of 1’s among the rightmost digits, so this position is not losing. However, suppose k3 were changed to be 12. Then, there would be exactly two 1’s in each digit position, and thus, the Nim position would become losing. Since a winning move is any move that leaves the game in a losing position, it follows that removing one stone from the third pile is a winning move when k1 = 7, k2 = 11, and k3 = 13. In fact, there are exactly three winning moves from this position: namely removing one stone from any of the three piles.

Input

The input test file will contain multiple test cases, each of which begins with a line indicating the number of piles, 1 ≤ n ≤ 1000. On the next line, there are n positive integers, 1 ≤ ki ≤ 1, 000, 000, 000, indicating the number of stones in each pile. The end-of-file is marked by a test case with n = 0 and should not be processed.

Output

For each test case, write a single line with an integer indicating the number of winning moves from the given Nim position.

Sample Input

3
7 11 13
2
1000000000 1000000000
0

Sample Output

3
0 简单博弈,博弈论经典入门:
http://blog.csdn.net/fromatp/article/details/53819565
http://blog.csdn.net/logic_nut/article/details/4711489
/*
如果对自己必胜,则要求对方必输,而题目给出了必输的要求就是n堆石子全部异或xor得到XOR,
如果XOR为0,则此状态必输。而我们就是要在其中一堆石子中拿取一定量的石头,使得这个行动过后对手到达必输点。
我们可以选取其中一堆石头,减少它的数目后,使得总的异或变成0,而题目就变成了,
到底有那几堆石头可以通过拿取一定的石头使得总的异或变成0.
对于st[i],因为st[i]^st[i]=0。则XOR^st[i]=tmp,根据弋获性质tmp就是如果第i堆石头不加入异或时,其他石头总的异或值。
如果我们可以使得第i堆石头变成tmp,则全部石头的异或值就能够得到0.根据这个理由,只要st[i]>tmp,则第i堆石头可行。
取大于而不是大于等于,是因为每一局都需要取一颗或以上的石头。
*/ #include<iostream>
#include<cstdio>
#include<cstring> #define N 1007 using namespace std;
int st[N],XOR; int main()
{
int n,ans;
while(scanf("%d",&n)&&n)
{
for(int i=;i<=n;i++)
scanf("%d",&st[i]);
XOR=;ans=;
for(int i=;i<=n;i++) XOR^=st[i];
for(int i=;i<=n;i++)
{
if((XOR^st[i])<st[i]) ans++;
}
printf("%d\n",ans);
}
return ;
}
												

poj2975 Nim(经典博弈)的更多相关文章

  1. Uva 10891 经典博弈区间DP

    经典博弈区间DP 题目链接:https://uva.onlinejudge.org/external/108/p10891.pdf 题意: 给定n个数字,A和B可以从这串数字的两端任意选数字,一次只能 ...

  2. poj2975 Nim 胜利的方案数

    Nim Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5545   Accepted: 2597 Description N ...

  3. (转)巴氏(bash)威佐夫(Wythoff)尼姆(Nim)博弈之模板

    感谢:巴氏(bash)威佐夫(Wythoff)尼姆(Nim)博弈之模板 转自:http://colorfulshark.cn/wordpress/巴氏(bash)威佐夫(wythoff)尼姆(nim) ...

  4. POJ2975:Nim(Nim博弈)

    Nim Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7279   Accepted: 3455 题目链接:http://p ...

  5. POJ2975 Nim 博弈论 尼姆博弈

    http://poj.org/problem?id=2975 题目始终是ac的最大阻碍. 问只取一堆有多少方案可以使当前局面为先手必败. 显然由尼姆博弈的性质可以知道需要取石子使所有堆石子数异或和为0 ...

  6. Nim游戏博弈(收集完全版)

    Nim游戏证明参见: 刘汝佳训练指南P135-写的很酷! 知乎上SimonS关于Nim博弈的回答! Nim游戏的概述: 还记得这个游戏吗? 给出n列珍珠,两人轮流取珍珠,每次在某一列中取至少1颗珍珠, ...

  7. HDU 5795 A Simple Nim (博弈 打表找规律)

    A Simple Nim 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5795 Description Two players take turns ...

  8. (转载)Nim游戏博弈(收集完全版)

    Nim游戏的概述: 还记得这个游戏吗?给出n列珍珠,两人轮流取珍珠,每次在某一列中取至少1颗珍珠,但不能在两列中取.最后拿光珍珠的人输.后来,在一份资料上看到,这种游戏称为“拈(Nim)”.据说,它源 ...

  9. poj 2975 Nim(博弈)

    Nim Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5232   Accepted: 2444 Description N ...

随机推荐

  1. 【sqli-labs】 less53 GET -Blind based -Order By Clause -String -Stacked injection(GET型基于盲注的字符型Order By从句堆叠注入)

    http://192.168.136.128/sqli-labs-master/Less-53/?sort=1';insert into users(id,username,password) val ...

  2. (转) Arcgis for js之WKT和GEOMETRY的相互转换

    http://blog.csdn.net/gisshixisheng/article/details/44057453 1.wkt简介 WKT(Well-known text)是一种文本标记语言,用于 ...

  3. Codeforces_738B

    B. Spotlights time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  4. Redis 之持久化(rdb、aof)

    Redis的持久化有2种方式   1快照  2是日志 测试aof:

  5. CentOS6.9下NFS配置说明(转载)

    NFS是Network File System的缩写,即网络文件系统.它的主要功能是通过网络(一般是局域网)让不同的主机系统之间可以共享文件或目录.NFS客户端可以通过挂载(mount)的方式将NFS ...

  6. react typescript 父组件调用子组件

    //父组件import * as React from 'react'import { Input } from 'antd'const Search = Input.Searchimport &qu ...

  7. SWING界面

    import java.awt.FlowLayout;import javax.swing.*;import java.awt.Container; public class kk extends J ...

  8. H5 应用程序缓存(离线缓存)

    离线缓存这个功能的实现有以下步骤: 1,以nginx做web服务器为例,在mime.types文件中添加一行:text/cache-manifest     manifest,作用是为了让服务器识别该 ...

  9. Codevs P1017 乘积最大

    P1017 乘积最大 题目描述 Description 今年是国际数学联盟确定的“2000——世界数学年”,又恰逢我国著名数学家华罗庚先生诞辰90周年.在华罗庚先生的家乡江苏金坛,组织了一场别开生面的 ...

  10. Gym - 101611D Decoding of Varints(阅读理解题 )

    Decoding of Varints ​ 题意&思路: 首先根据红色边框部分的公式算出x,再有绿色部分得知,如果x是偶数则直接除以2,x是奇数则(x+1)/-2. PS:这题有数据会爆掉un ...