poj2975 Nim(经典博弈)
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 5866 | Accepted: 2777 |
Description
Nim is a 2-player game featuring several piles of stones. Players alternate turns, and on his/her turn, a player’s move consists of removing one or more stones from any single pile. Play ends when all the stones have been removed, at which point the last player to have moved is declared the winner. Given a position in Nim, your task is to determine how many winning moves there are in that position.
A position in Nim is called “losing” if the first player to move from that position would lose if both sides played perfectly. A “winning move,” then, is a move that leaves the game in a losing position. There is a famous theorem that classifies all losing positions. Suppose a Nim position contains n piles having k1, k2, …, kn stones respectively; in such a position, there are k1 + k2 + … + kn possible moves. We write each ki in binary (base 2). Then, the Nim position is losing if and only if, among all the ki’s, there are an even number of 1’s in each digit position. In other words, the Nim position is losing if and only if the xor of the ki’s is 0.
Consider the position with three piles given by k1 = 7, k2 = 11, and k3 = 13. In binary, these values are as follows:
- 111
1011
1101
There are an odd number of 1’s among the rightmost digits, so this position is not losing. However, suppose k3 were changed to be 12. Then, there would be exactly two 1’s in each digit position, and thus, the Nim position would become losing. Since a winning move is any move that leaves the game in a losing position, it follows that removing one stone from the third pile is a winning move when k1 = 7, k2 = 11, and k3 = 13. In fact, there are exactly three winning moves from this position: namely removing one stone from any of the three piles.
Input
The input test file will contain multiple test cases, each of which begins with a line indicating the number of piles, 1 ≤ n ≤ 1000. On the next line, there are n positive integers, 1 ≤ ki ≤ 1, 000, 000, 000, indicating the number of stones in each pile. The end-of-file is marked by a test case with n = 0 and should not be processed.
Output
For each test case, write a single line with an integer indicating the number of winning moves from the given Nim position.
Sample Input
- 3
- 7 11 13
- 2
- 1000000000 1000000000
- 0
Sample Output
- 3
- 0
- 简单博弈,博弈论经典入门:
http://blog.csdn.net/fromatp/article/details/53819565
http://blog.csdn.net/logic_nut/article/details/4711489
- /*
- 如果对自己必胜,则要求对方必输,而题目给出了必输的要求就是n堆石子全部异或xor得到XOR,
- 如果XOR为0,则此状态必输。而我们就是要在其中一堆石子中拿取一定量的石头,使得这个行动过后对手到达必输点。
- 我们可以选取其中一堆石头,减少它的数目后,使得总的异或变成0,而题目就变成了,
- 到底有那几堆石头可以通过拿取一定的石头使得总的异或变成0.
- 对于st[i],因为st[i]^st[i]=0。则XOR^st[i]=tmp,根据弋获性质tmp就是如果第i堆石头不加入异或时,其他石头总的异或值。
- 如果我们可以使得第i堆石头变成tmp,则全部石头的异或值就能够得到0.根据这个理由,只要st[i]>tmp,则第i堆石头可行。
- 取大于而不是大于等于,是因为每一局都需要取一颗或以上的石头。
- */
- #include<iostream>
- #include<cstdio>
- #include<cstring>
- #define N 1007
- using namespace std;
- int st[N],XOR;
- int main()
- {
- int n,ans;
- while(scanf("%d",&n)&&n)
- {
- for(int i=;i<=n;i++)
- scanf("%d",&st[i]);
- XOR=;ans=;
- for(int i=;i<=n;i++) XOR^=st[i];
- for(int i=;i<=n;i++)
- {
- if((XOR^st[i])<st[i]) ans++;
- }
- printf("%d\n",ans);
- }
- return ;
- }
poj2975 Nim(经典博弈)的更多相关文章
- Uva 10891 经典博弈区间DP
经典博弈区间DP 题目链接:https://uva.onlinejudge.org/external/108/p10891.pdf 题意: 给定n个数字,A和B可以从这串数字的两端任意选数字,一次只能 ...
- poj2975 Nim 胜利的方案数
Nim Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5545 Accepted: 2597 Description N ...
- (转)巴氏(bash)威佐夫(Wythoff)尼姆(Nim)博弈之模板
感谢:巴氏(bash)威佐夫(Wythoff)尼姆(Nim)博弈之模板 转自:http://colorfulshark.cn/wordpress/巴氏(bash)威佐夫(wythoff)尼姆(nim) ...
- POJ2975:Nim(Nim博弈)
Nim Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7279 Accepted: 3455 题目链接:http://p ...
- POJ2975 Nim 博弈论 尼姆博弈
http://poj.org/problem?id=2975 题目始终是ac的最大阻碍. 问只取一堆有多少方案可以使当前局面为先手必败. 显然由尼姆博弈的性质可以知道需要取石子使所有堆石子数异或和为0 ...
- Nim游戏博弈(收集完全版)
Nim游戏证明参见: 刘汝佳训练指南P135-写的很酷! 知乎上SimonS关于Nim博弈的回答! Nim游戏的概述: 还记得这个游戏吗? 给出n列珍珠,两人轮流取珍珠,每次在某一列中取至少1颗珍珠, ...
- HDU 5795 A Simple Nim (博弈 打表找规律)
A Simple Nim 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5795 Description Two players take turns ...
- (转载)Nim游戏博弈(收集完全版)
Nim游戏的概述: 还记得这个游戏吗?给出n列珍珠,两人轮流取珍珠,每次在某一列中取至少1颗珍珠,但不能在两列中取.最后拿光珍珠的人输.后来,在一份资料上看到,这种游戏称为“拈(Nim)”.据说,它源 ...
- poj 2975 Nim(博弈)
Nim Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5232 Accepted: 2444 Description N ...
随机推荐
- Python星号表达式
有时候可能想分解出某些值然后丢弃它们,可以使用诸如 _ 或者 ign(ignored)等常用来表示待丢弃值的变量名: record = ('ACME', 50, 123.45, (12, 18, 20 ...
- Java中字符串的常用属性与方法
•字符串常用的属性 string.length()————>返回字符串的长度,int类型. •字符串常用的方法 String.contains(";")——————>判 ...
- php第二十节课
JSON弹窗 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www. ...
- 洛谷——P1572 计算分数
P1572 计算分数 模拟+字符串 注意有两位数的情况以及负数情况 #include<bits/stdc++.h> using namespace std; string s; ],b[] ...
- P2080 增进感情
题目背景 小明和小红的感情,是慢慢发展起来的. 题目描述 他们对对方分别有一个好感值.定义两人的亲密程度为两人的好感值之和. 如果他们的亲密程度达到V,则他们将走到一起.他们以后的生活将取决于两人的好 ...
- C/C++ 中野指针产生的问题
野指针产生的问题: 野指针的定义: > 野指针是指:指向一个已删除的对象或未申请访问受限内存区域的指针.与空指针不同,野指针无法通过简单地判断是否为NULL避免,而只能通过养成良好的编程习惯来尽 ...
- img标签和background-image的区别和具体使用时机
最近在使用图片过程中,纠结到底使用img标签还是使用background-image属性,翻阅资料和百度后作出下列理解. 简单来说img是内容部分的东西,background-image是修饰性的东西 ...
- copy contents of file with variable number in Matlab
input : transient.case output: transient_1.case, transient_2.case, transient_3.case ... ************ ...
- seminar information (Email template)
The following is an email example of seminar information **************** Dear all, It is a plea ...
- clock()函数的使用
**clock()捕捉从程序开始运行到clock()被调用时所耗费的时间,这个时间单位是clock tick, 即"时钟打点." 常数CLK_TCK:机器时钟每秒所走的时钟打点数* ...