C. Harmony Analysis
time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

The semester is already ending, so Danil made an effort and decided to visit a lesson on harmony analysis to know how does the professor look like, at least. Danil was very bored on this lesson until the teacher gave the group a simple task: find 4 vectors
in 4-dimensional space, such that every coordinate of every vector is 1 or  - 1 and
any two vectors are orthogonal. Just as a reminder, two vectors in n-dimensional space are considered to be orthogonal if and only
if their scalar product is equal to zero, that is:


.

Danil quickly managed to come up with the solution for this problem and the teacher noticed that the problem can be solved in a more general case for 2k vectors
in 2k-dimensinoal
space. When Danil came home, he quickly came up with the solution for this problem. Can you cope with it?

Input

The only line of the input contains a single integer k (0 ≤ k ≤ 9).

Output

Print 2k lines
consisting of 2k characters
each. The j-th character of the i-th
line must be equal to ' * ' if the j-th
coordinate of the i-th vector is equal to  - 1,
and must be equal to ' + ' if it's equal to  + 1.
It's guaranteed that the answer always exists.

If there are many correct answers, print any.

Sample test(s)
input
2
output
++**
+*+*
++++
+**+
Note

Consider all scalar products in example:

  • Vectors 1 and 2: ( + 1)·( + 1) + ( + 1)·( - 1) + ( - 1)·( + 1) + ( - 1)·( - 1) = 0
  • Vectors 1 and 3: ( + 1)·( + 1) + ( + 1)·( + 1) + ( - 1)·( + 1) + ( - 1)·( + 1) = 0
  • Vectors 1 and 4: ( + 1)·( + 1) + ( + 1)·( - 1) + ( - 1)·( - 1) + ( - 1)·( + 1) = 0
  • Vectors 2 and 3: ( + 1)·( + 1) + ( - 1)·( + 1) + ( + 1)·( + 1) + ( - 1)·( + 1) = 0
  • Vectors 2 and 4: ( + 1)·( + 1) + ( - 1)·( - 1) + ( + 1)·( - 1) + ( - 1)·( + 1) = 0
  • Vectors 3 and 4: ( + 1)·( + 1) + ( + 1)·( - 1) + ( + 1)·( - 1) + ( + 1)·( + 1) = 0

题目链接:点击打开链接

在2^k维空间中构造2^k个相互垂直的向量.

观察给出的数据, 无限脑洞...

AC代码:

#include "iostream"
#include "cstdio"
#include "cstring"
#include "algorithm"
#include "queue"
#include "stack"
#include "cmath"
#include "utility"
#include "map"
#include "set"
#include "vector"
#include "list"
#include "string"
#include "cstdlib"
using namespace std;
typedef long long ll;
const int MOD = 1e9 + 7;
const int INF = 0x3f3f3f3f;
int n;
int main(int argc, char const *argv[])
{
scanf("%d", &n);
n = 1 << n;
for(int i = 0; i < n; ++i) {
for(int j = 0; j < n; ++j)
printf("%c", __builtin_parity(i & j) ? '*' : '+');
printf("\n");
}
return 0;
}

列举四个位运算函数:

  • int __builtin_ffs (unsigned int x)

    返回x的最后一位1的是从后向前第几位,比方7368(1110011001000)返回4。
  • int __builtin_clz (unsigned int x)

    返回前导的0的个数。

  • int __builtin_ctz (unsigned int x)

    返回后面的0个个数,和__builtin_clz相对。

  • int __builtin_popcount (unsigned int x)

    返回二进制表示中1的个数。

  • int __builtin_parity (unsigned int x)

    返回x的奇偶校验位,也就是x的1的个数模2的结果。
  • 摘自:点击打开链接

Codeforces Round #337 (Div. 2) 610C Harmony Analysis(脑洞)的更多相关文章

  1. Codeforces Round #337 (Div. 2) C. Harmony Analysis 构造

    C. Harmony Analysis 题目连接: http://www.codeforces.com/contest/610/problem/C Description The semester i ...

  2. Codeforces Round #337 (Div. 2) C. Harmony Analysis 数学

    C. Harmony Analysis   The semester is already ending, so Danil made an effort and decided to visit a ...

  3. Codeforces Round #337 (Div. 2) C. Harmony Analysis

    题目链接:http://codeforces.com/contest/610/problem/C 解题思路: 将后一个矩阵拆分为四个前一状态矩阵,其中三个与前一状态相同,剩下一个直接取反就行.还有很多 ...

  4. Codeforces Round #337 (Div. 2)

    水 A - Pasha and Stick #include <bits/stdc++.h> using namespace std; typedef long long ll; cons ...

  5. Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树扫描线

    D. Vika and Segments 题目连接: http://www.codeforces.com/contest/610/problem/D Description Vika has an i ...

  6. Codeforces Round #337 (Div. 2) B. Vika and Squares 贪心

    B. Vika and Squares 题目连接: http://www.codeforces.com/contest/610/problem/B Description Vika has n jar ...

  7. Codeforces Round #337 (Div. 2) A. Pasha and Stick 数学

    A. Pasha and Stick 题目连接: http://www.codeforces.com/contest/610/problem/A Description Pasha has a woo ...

  8. Codeforces Round #337 (Div. 2) D. Vika and Segments (线段树+扫描线+离散化)

    题目链接:http://codeforces.com/contest/610/problem/D 就是给你宽度为1的n个线段,然你求总共有多少单位的长度. 相当于用线段树求面积并,只不过宽为1,注意y ...

  9. Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树 矩阵面积并

    D. Vika and Segments     Vika has an infinite sheet of squared paper. Initially all squares are whit ...

随机推荐

  1. 模块 –OS & OS.PATH

    模块-Os模块: os.getcwd() 获取当前工作目录,即当前python脚本工作的目录路径 In [25]: os.getcwd() Out[25]: 'C:\\Users\\***' os.c ...

  2. 影像服务——加载CESIUM自带的影像服务

    1.加载arcgis数据——ArcGisMapServerImageryProvider var viewer = new Cesium.Viewer("cesiumDiv",{ ...

  3. [BZOJ3673&3674]可持久化并查集&加强版

    题目大意:让你实现一个可持久化的并查集(3674强制在线). 解题思路:刚刚介绍了一个叫rope的神器:我是刘邦,在这两题(实际上两题没什么区别)就派上用场了. 正解应该是主席树||可持久化平衡树,然 ...

  4. BZOJ 5254 [Fjwc2018]红绿灯 (线段树)

    题目大意:一个wly从家走到学校要经过n个红绿灯,绿灯持续时间是$g$,红灯是$r$,所有红绿灯同时变红变绿,交通规则和现实中一样,不能抢红灯,两个红绿灯之间道路的长度是$di$,一共$Q$个询问,求 ...

  5. 【转载】spring boot 链接 虚拟机(Linux) redis

    原文:https://www.imooc.com/article/43279?block_id=tuijian_wz 前提是你已经安装redis且支持远程连接,redis的安装这里不再赘述,有需要的可 ...

  6. Bedrock Linux 0.7.3 发布

    Bedrock Linux是一种元分发,允许用户利用其他通常互斥的Linux发行版的功能,并让它们无缝地一起工作.该项目发布了其0.7.x系列,Bedrock Linux 0.7.3的更新. 新的更新 ...

  7. Chrome扩展程序推荐

    Chrome扩展程序 AdBlock 印象笔记 网页截图:注释&录屏 油猴 zenmate-vpn sourcegraph 推荐网站

  8. 斗地主算法的设计与实现(一)--项目介绍&如何定义和构造一张牌

    大学期间,我在别人的基础上,写了一个简易的斗地主程序. 主要实现了面向对象设计,洗牌.发牌.判断牌型.比较牌的大小.游戏规则等算法. 通过这个斗地主小项目的练习,提高了我的面向对象设计能力,加深了对算 ...

  9. PNG文件结构分析

    http://blog.163.com/iwait2012@126/blog/static/16947232820124411174877/ PNG文件结构分析 对于一个PNG文件来说,其文件头总是由 ...

  10. SQL Server 性能调优2 之索引(Index)的建立

    前言 索引是关系数据库中最重要的对象之中的一个,他能显著降低磁盘I/O及逻辑读取的消耗,并以此来提升 SELECT 语句的查找性能.但它是一把双刃剑.使用不当反而会影响性能:他须要额外的空间来存放这些 ...