C. Harmony Analysis
time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

The semester is already ending, so Danil made an effort and decided to visit a lesson on harmony analysis to know how does the professor look like, at least. Danil was very bored on this lesson until the teacher gave the group a simple task: find 4 vectors
in 4-dimensional space, such that every coordinate of every vector is 1 or  - 1 and
any two vectors are orthogonal. Just as a reminder, two vectors in n-dimensional space are considered to be orthogonal if and only
if their scalar product is equal to zero, that is:


.

Danil quickly managed to come up with the solution for this problem and the teacher noticed that the problem can be solved in a more general case for 2k vectors
in 2k-dimensinoal
space. When Danil came home, he quickly came up with the solution for this problem. Can you cope with it?

Input

The only line of the input contains a single integer k (0 ≤ k ≤ 9).

Output

Print 2k lines
consisting of 2k characters
each. The j-th character of the i-th
line must be equal to ' * ' if the j-th
coordinate of the i-th vector is equal to  - 1,
and must be equal to ' + ' if it's equal to  + 1.
It's guaranteed that the answer always exists.

If there are many correct answers, print any.

Sample test(s)
input
2
output
++**
+*+*
++++
+**+
Note

Consider all scalar products in example:

  • Vectors 1 and 2: ( + 1)·( + 1) + ( + 1)·( - 1) + ( - 1)·( + 1) + ( - 1)·( - 1) = 0
  • Vectors 1 and 3: ( + 1)·( + 1) + ( + 1)·( + 1) + ( - 1)·( + 1) + ( - 1)·( + 1) = 0
  • Vectors 1 and 4: ( + 1)·( + 1) + ( + 1)·( - 1) + ( - 1)·( - 1) + ( - 1)·( + 1) = 0
  • Vectors 2 and 3: ( + 1)·( + 1) + ( - 1)·( + 1) + ( + 1)·( + 1) + ( - 1)·( + 1) = 0
  • Vectors 2 and 4: ( + 1)·( + 1) + ( - 1)·( - 1) + ( + 1)·( - 1) + ( - 1)·( + 1) = 0
  • Vectors 3 and 4: ( + 1)·( + 1) + ( + 1)·( - 1) + ( + 1)·( - 1) + ( + 1)·( + 1) = 0

题目链接:点击打开链接

在2^k维空间中构造2^k个相互垂直的向量.

观察给出的数据, 无限脑洞...

AC代码:

#include "iostream"
#include "cstdio"
#include "cstring"
#include "algorithm"
#include "queue"
#include "stack"
#include "cmath"
#include "utility"
#include "map"
#include "set"
#include "vector"
#include "list"
#include "string"
#include "cstdlib"
using namespace std;
typedef long long ll;
const int MOD = 1e9 + 7;
const int INF = 0x3f3f3f3f;
int n;
int main(int argc, char const *argv[])
{
scanf("%d", &n);
n = 1 << n;
for(int i = 0; i < n; ++i) {
for(int j = 0; j < n; ++j)
printf("%c", __builtin_parity(i & j) ? '*' : '+');
printf("\n");
}
return 0;
}

列举四个位运算函数:

  • int __builtin_ffs (unsigned int x)

    返回x的最后一位1的是从后向前第几位,比方7368(1110011001000)返回4。
  • int __builtin_clz (unsigned int x)

    返回前导的0的个数。

  • int __builtin_ctz (unsigned int x)

    返回后面的0个个数,和__builtin_clz相对。

  • int __builtin_popcount (unsigned int x)

    返回二进制表示中1的个数。

  • int __builtin_parity (unsigned int x)

    返回x的奇偶校验位,也就是x的1的个数模2的结果。
  • 摘自:点击打开链接

Codeforces Round #337 (Div. 2) 610C Harmony Analysis(脑洞)的更多相关文章

  1. Codeforces Round #337 (Div. 2) C. Harmony Analysis 构造

    C. Harmony Analysis 题目连接: http://www.codeforces.com/contest/610/problem/C Description The semester i ...

  2. Codeforces Round #337 (Div. 2) C. Harmony Analysis 数学

    C. Harmony Analysis   The semester is already ending, so Danil made an effort and decided to visit a ...

  3. Codeforces Round #337 (Div. 2) C. Harmony Analysis

    题目链接:http://codeforces.com/contest/610/problem/C 解题思路: 将后一个矩阵拆分为四个前一状态矩阵,其中三个与前一状态相同,剩下一个直接取反就行.还有很多 ...

  4. Codeforces Round #337 (Div. 2)

    水 A - Pasha and Stick #include <bits/stdc++.h> using namespace std; typedef long long ll; cons ...

  5. Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树扫描线

    D. Vika and Segments 题目连接: http://www.codeforces.com/contest/610/problem/D Description Vika has an i ...

  6. Codeforces Round #337 (Div. 2) B. Vika and Squares 贪心

    B. Vika and Squares 题目连接: http://www.codeforces.com/contest/610/problem/B Description Vika has n jar ...

  7. Codeforces Round #337 (Div. 2) A. Pasha and Stick 数学

    A. Pasha and Stick 题目连接: http://www.codeforces.com/contest/610/problem/A Description Pasha has a woo ...

  8. Codeforces Round #337 (Div. 2) D. Vika and Segments (线段树+扫描线+离散化)

    题目链接:http://codeforces.com/contest/610/problem/D 就是给你宽度为1的n个线段,然你求总共有多少单位的长度. 相当于用线段树求面积并,只不过宽为1,注意y ...

  9. Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树 矩阵面积并

    D. Vika and Segments     Vika has an infinite sheet of squared paper. Initially all squares are whit ...

随机推荐

  1. 关于Scrapy爬虫项目运行和调试的小技巧(上篇)

    扫除运行Scrapy爬虫程序的bug之后,现在便可以开始进行编写爬虫逻辑了.在正式开始爬虫编写之前,在这里介绍四种小技巧,可以方便我们操纵和调试爬虫. 一.建立main.py文件,直接在Pycharm ...

  2. 【BZOJ4940】【YNOI2016】这是我自己的发明

    阅读此篇文章前请先跟我大喊三声:dllxl!dllxl!dllxl! 咳咳. 题意: Description 给一个树,n 个点,有点权,初始根是 1. m 个操作,每次操作: 1. 将树根换为 x. ...

  3. 洛谷1345 [Usaco5.4]奶牛的电信

    题目描述 农夫约翰的奶牛们喜欢通过电邮保持联系,于是她们建立了一个奶牛电脑网络,以便互相交流.这些机器用如下的方式发送电邮:如果存在一个由c台电脑组成的序列a1,a2,...,a(c),且a1与a2相 ...

  4. LightOJ-1074 Extended Traffic 最短路问题 注意连通性

    题目链接:https://cn.vjudge.net/problem/LightOJ-1074 题意 给一图 求最短路 若最短路<3或没有最短路,则输出'?' 思路 首先注意到可能存在负环,所以 ...

  5. C++ STL rope介绍----可持久化平衡树

    大致介绍: rope这个东西,我刚刚知道这玩意,用的不是很多,做个简单的介绍. 官方说明:我是刘邦(我估计你是看不懂的). rope就是一个用可持久化平衡树实现的“重型”string(然而它也可以保存 ...

  6. 写入~/.bashrc 文件

    1.进入~/.bashrc 文件 vim ~/.bashrc 2.按下I键,然后按Enter键 加入路径 3.按ESC键退出,再按:wq! 保存即可.

  7. 【转载】spring-boot 项目跳转到JSP页面

    原路径:https://blog.csdn.net/qq_36820717/article/details/80008225 1.新建spring-boot项目  目录结构如下 2.新建TestCon ...

  8. linux 系统相关命令

    说明:此篇以 Debian ( ubuntu16.04 ) 命令为例 1. tab键默认是不能自动补全命令 apt install bash-completion // 安装完成之后重启系统 2. 虚 ...

  9. SVN学习总结(2)——SVN冲突解决

    在我们用VS进行项目合作开发的过程中,SVN的提交控制是至关重要的,大家不可避免的都遇到过SVN冲突的问题,开发的时候,应该认真学习SVN的知识,减少冲突,集中时间放在开发上. 解决冲突有三种方式: ...

  10. java 基本类型、包装类、字符串之间的转换

    1.基本类型和包装类 基本类型和包装类可通过自动装箱和拆箱实现. int i = 24; Integer a = new Integer(i); //手动装箱 Integer b = i; //自动装 ...