题目

给一个正整数num,返回小于或等于num的斐波纳契奇数之和。

斐波纳契数列中的前几个数字是 1、1、2、3、5 和 8,随后的每一个数字都是前两个数字之和。

例如,sumFibs(4)应该返回 5,因为斐波纳契数列中所有小于4的奇数是 1、1、3。

提示

此题不能用递归来实现斐波纳契数列。因为当num较大时,内存会溢出,推荐用数组来实现。

参考文档:博客园Issue 
Remainder

测试用例

  • sumFibs(1) 应该返回一个数字。
  • sumFibs(1000) 应该返回 1785
  • sumFibs(4000000) 应该返回 4613732
  • sumFibs(4) 应该返回 5
  • sumFibs(75024) 应该返回 60696
  • sumFibs(75025) 应该返回 135721

分析思路

斐波那契数第一个和第二个为 1 是固定的,所以初始数组可以设置为: 
var fibsArray = [1, 1]; 
然后根据最后一个数等于前两数之和设置下一个数组元素,这样就组成了需要的斐波那契数组。对于奇数直接计算提出就行。

代码

1.function sumFibs(num) {
2. var fibsArray = [1, 1];
3. var retVal = 1;
4.
5. while (fibsArray[fibsArray.length - 1] <= num) {
6. if (fibsArray[fibsArray.length - 1] % 2) {
7. retVal += fibsArray[fibsArray.length - 1];
8. }
9. fibsArray.push(fibsArray[fibsArray.length - 2] + fibsArray[fibsArray.length - 1]);
10. }
11. fibsArray.pop(); /* 去除最后一个大于 num 的数 */
12.
13. return retVal;
14.}
15.
16.sumFibs(4);
另一个不用到数组的方法,该方法主要是针对该题的
1.function sumFibs(num) {
2. var fibo = [1, 1];
3. var oddSum = 2;
4.
5. while(true){
6. var item = fibo[0] + fibo[1];
7. if(num < item){
8. return oddSum;
9. }
10. if(item % 2){
11. oddSum += item;
12. }
13. fibo[0] = fibo[1];
14. fibo[1] = item;
15. }
16.}
17.
18.sumFibs(4);
 

[Intermediate Algorithm] - Sum All Odd Fibonacci Numbers的更多相关文章

  1. Sum All Odd Fibonacci Numbers

    function sumFibs(num) { //return num; var arr = [1,1]; var add = 2; while(true){ var item = arr[0] + ...

  2. Sum All Odd Fibonacci Numbers-freecodecamp算法题目

    Sum All Odd Fibonacci Numbers 1.要求 给一个正整数num,返回小于或等于num的斐波纳契奇数之和. 斐波纳契数列中的前几个数字是 1.1.2.3.5 和 8,随后的每一 ...

  3. [Intermediate Algorithm] - Sum All Primes

    题目 求小于等于给定数值的质数之和. 只有 1 和它本身两个约数的数叫质数.例如,2 是质数,因为它只能被 1 和 2 整除.1 不是质数,因为它只能被自身整除. 给定的数不一定是质数. 提示 For ...

  4. codeforces 446C DZY Loves Fibonacci Numbers(数学 or 数论+线段树)(两种方法)

    In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation F1 ...

  5. Codeforces 446-C DZY Loves Fibonacci Numbers 同余 线段树 斐波那契数列

    C. DZY Loves Fibonacci Numbers time limit per test 4 seconds memory limit per test 256 megabytes inp ...

  6. cf446C DZY Loves Fibonacci Numbers

    C. DZY Loves Fibonacci Numbers time limit per test 4 seconds memory limit per test 256 megabytes inp ...

  7. Codeforces Round #FF 446 C. DZY Loves Fibonacci Numbers

    參考:http://www.cnblogs.com/chanme/p/3843859.html 然后我看到在别人的AC的方法里还有这么一种神方法,他预先设定了一个阈值K,当当前的更新操作数j<K ...

  8. [CodeForces - 447E] E - DZY Loves Fibonacci Numbers

    E  DZY Loves Fibonacci Numbers In mathematical terms, the sequence Fn of Fibonacci numbers is define ...

  9. ACM学习历程—Codeforces 446C DZY Loves Fibonacci Numbers(线段树 && 数论)

    Description In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence ...

随机推荐

  1. 3分钟实现小程序唤起微信支付 Laravel教程

    微信支付的接入,如果不使用成熟的开发包,将是巨大的工作量. 依赖 EasyWechat 先在 laravel 项目中依赖 easywechat 这个包 composer require "o ...

  2. 【2】数据采集 - urllib模块

    python2环境下关于urllib2的使用可以学习这篇文章.本文主要针对python3环境下使用urllib模块实现简单程序爬虫. 链接:https://www.jianshu.com/p/3183 ...

  3. Tomcat日志配置远程Syslog采集

    http://blog.csdn.net/leizi191110211/article/details/51593748

  4. list转map工具类,根据指定的字段分组

    import org.apache.log4j.Logger; import java.lang.reflect.Method;import java.util.ArrayList;import ja ...

  5. Object对象具体解释(一)之toString

    Object作为Java中超然的存在.当中定义了一切对象都共同拥有的方法. 特点: 1. java.lang包在使用的时候无需显示导入.编译时由编译器自己主动导入. 2. Object类是类层次结构的 ...

  6. 【VC编程技巧】窗口☞3.6以渐变效果加载对话框

    平时我们常常能够看到非常多应用程序启动过程非常酷.什么百叶窗.渐变,各种效果,今天我们看一下怎样在程序中添加这样的效果. 一.演示样例展示: watermark/2/text/aHR0cDovL2Js ...

  7. UML的基本图(二)

     Both sequence diagrams and communication diagrams are kinds of interaction diagrams. An interacti ...

  8. android.mk中LOCAL_MODULE_TAGS说明【转】

    转自http://blog.csdn.net/evilcode/article/details/6459299 LOCAL_MODULE_TAGS :=user eng tests optional ...

  9. NUnit Console Command Line

    https://github.com/nunit/docs/wiki/Console-Command-Line The console interface runner is invoked by a ...

  10. hdoj--1176--免费馅饼(动态规划)

    免费馅饼 Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status D ...