NOI 2016 循环之美 (莫比乌斯反演+杜教筛)
题目大意:略 洛谷传送门 鉴于洛谷最近总崩,附上良心LOJ链接
任何形容词也不够赞美这一道神题
$\sum\limits_{i=1}^{N}\sum\limits_{j=1}^{M}[gcd(i,j)==1][gcd(j,K)==1]$
$\sum\limits_{j=1}^{M}[gcd(j,K)==1]\sum\limits_{i=1}^{N}[gcd(i,j)==1]$
我们先处理右边的式子$\sum\limits_{i=1}^{N}[gcd(i,j)==1]$:
$\sum\limits_{i=1}^{N}\sum\limits_{d|gcd(i,j)}\mu(d)\sum\limits_{j=1}^{M}[gcd(j,K)==1][d|j]$
$\sum\limits_{d=1}^{N}\mu(d)\left \lfloor \frac{N}{d} \right \rfloor \sum\limits_{j=1}^{M}[gcd(j,K)==1][d|j]$
$\sum\limits_{d=1}^{N}\mu(d)\left \lfloor \frac{N}{d} \right \rfloor \sum\limits_{j=1}^{\left \lfloor \frac{M}{d} \right \rfloor}[gcd(jd,K)==1]$
加下来就是比较关键的一个展开式子,[gcd(jd,K)==1]是[gcd(d,K)==1]&[gcd(j,K)==1]的充分必要条件:
$\sum\limits_{d=1}^{N}[gcd(d,K)==1]\mu(d)\left \lfloor \frac{N}{d} \right \rfloor \sum\limits_{j=1}^{\left \lfloor \frac{M}{d} \right \rfloor}[gcd(j,K)==1]$
84分算法:
令$f(n)=\sum\limits_{i=1}^{n}[gcd(i,K)==1]$
这是啥?
欧拉函数$\varphi$啊!别和我一样反演傻了连欧拉函数的定义都忘了
$f(n)=\left \lfloor \frac{n}{K} \right \rfloor \varphi(K) + \sum\limits_{i=1}^{n\;mod\;K}[gcd(i,K)==1]$
预处理出$\varphi(K)$和$\sum\limits_{i=1}^{n}[gcd(i,K)==1]$,那么$f(n)$就能在$O(1)$求得
可$\sum\limits_{i=1}^{n}[gcd(i,K)==1]\mu(d)$就不能用$\varphi$了,但经过计算,$g$数组能在大约$O(n*K的质因子个数)$的时间内处理出来,极限情况也只不超过$2.6 \cdot 10^{7}$
那么这个问题就在$O(n)$的时间内被解决了
蒟蒻的代码写得非常迷就不放了
100分算法:
这是一道神仙题
先放上原式:$\sum\limits_{d=1}^{N}[gcd(d,K)==1]\mu(d)\left \lfloor \frac{N}{d} \right \rfloor \sum\limits_{j=1}^{\left \lfloor \frac{M}{d} \right \rfloor}[gcd(j,K)==1]$
$\sum\limits_{j=1}^{\left \lfloor \frac{M}{d} \right \rfloor}[gcd(j,K)==1]$可以用$84$分算法里的方法预处理,每次$O(1)$得到
现在令$g(N,K)=\sum\limits_{i=1}^{N}[gcd(i,K)==1]\mu(i)$
$=\sum\limits_{i=1}^{N}\mu(i)*\sum\limits_{d|i}\mu(d)$
$=\sum\limits_{d|K}\mu(d) \sum\limits_{i=1}^{N} [d|i]\mu(i)$
$=\sum\limits_{d|K}\mu(d) \sum\limits_{i=1}^{\left \lfloor \frac{N}{d} \right \rfloor} \mu(id)$
关键的部分来了
如果两个数$gcd(x,y)==1$,说明它们没有公共因子,满足积性函数的性质,那么$\mu(xy)=\mu(x)\mu(y)$
反之它们存在公共因子,那么$\mu(xy)$一定等于$0$
利用这个性质
$=\sum\limits_{d|K}\mu(d)^{2} \sum\limits_{i=1}^{\left \lfloor \frac{N}{d} \right \rfloor} [gcd(i,d)==1]\mu(i)$
诶!右面这个东西$\sum\limits_{i=1}^{\left \lfloor \frac{N}{d} \right \rfloor} [gcd(i,d)==1]\mu(i)$,似乎就是$g(\left \lfloor \frac{N}{d} \right \rfloor,d)$啊!
递归求解即可
当$n==0$是,答案就是$0$
发现$K==1$时不能继续递归了否则会死循环,此时
$G(n,1)=\sum\limits_{i=1}^{n} [gcd(i,1)==1]\mu(i)=\sum\limits_{i=1}^{n} \mu(i)$
$n$可能很大,上杜教筛即可
#include <map>
#include <cmath>
#include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N1 20000010
#define M1 2000010
#define K1 2010
#define ll long long
#define dd double
#define cll const long long
#define it map<int,int>::iterator
using namespace std; int N,M,K,maxn;
int mu[N1],smu[N1],pr[M1],cnt,phik; bool use[N1];
int f[K1],ps[K1],son[K1],is[K1],pn,sn;
vector<int>ss[K1];
void Pre()
{
int i,j,x; mu[]=smu[]=;
for(i=;i<=maxn;i++)
{
if(!use[i]){ pr[++cnt]=i; mu[i]=-;}
for(j=;j<=cnt&&i*pr[j]<=maxn;j++)
{
use[i*pr[j]]=;
if(i%pr[j]){ mu[i*pr[j]]=-mu[i];}
else{ break; }
}
smu[i]=smu[i-]+mu[i];
}
for(son[++sn]=,x=K,phik=K,i=;i<=K;i++)
{
if(x%i==){ ps[++pn]=i; phik=phik/i*(i-); while(x%i==) x/=i; }
if(K%i==){ son[++sn]=i; }
}
for(j=;j<=pn;j++)
for(i=ps[j];i<=K;i+=ps[j]) is[i]=;
for(i=;i<=K;i++) f[i]=f[i-]+(is[i]?:);
for(i=;i<=sn;i++)
{
x=son[i];
for(j=;j<=x;j++)
if(x%j==&&mu[j]) ss[x].push_back(j);
}
}
map<int,int>mp;
ll Smu(int n)
{
if(n<=maxn) return smu[n];
it k=mp.find(n);
if(k!=mp.end()) return k->second;
int i,la;ll ans=;
for(i=;i<=n;i=la+)
{
la=n/(n/i);
ans-=1ll*Smu(n/i)*(la-i+);
}
mp[n]=ans;
return ans;
}
ll F(int x){return 1ll*(x/K)*phik+f[x%K];}
ll G(int n,int k)
{
if(!n) return ;
if(k==)
{
if(n<=maxn) return smu[n];
else return Smu(n);
}
int i,d;ll ans=;
for(i=;i<ss[k].size();i++)
{
d=ss[k][i];
ans+=1ll*G(n/d,d);
}
return ans;
} int main()
{
scanf("%d%d%d",&N,&M,&K);
int i,j,la; ll ans=; maxn=min(max(N,M),); Pre();
for(i=;i<=min(N,M);i=la+)
{
la=min(N/(N/i),M/(M/i));
ans+=1ll*(G(la,K)-G(i-,K))*(N/i)*F(M/i);
}
printf("%lld\n",ans);
return ;
}
NOI 2016 循环之美 (莫比乌斯反演+杜教筛)的更多相关文章
- [复习]莫比乌斯反演,杜教筛,min_25筛
[复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_ ...
- 【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛
题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一 ...
- [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)
[BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...
- BZOJ4652 [Noi2016]循环之美 【数论 + 莫比乌斯反演 + 杜教筛】
题目链接 BZOJ 题解 orz 此题太优美了 我们令\(\frac{x}{y}\)为最简分数,则\(x \perp y\)即,\(gcd(x,y) = 1\) 先不管\(k\)进制,我们知道\(10 ...
- BZOJ4652 NOI2016循环之美(莫比乌斯反演+杜教筛)
因为要求数值不同,不妨设gcd(x,y)=1.由提示可以知道,x/y是纯循环小数的充要条件是x·klen=x(mod y).因为x和y互质,两边同除x,得klen=1(mod y).那么当且仅当k和y ...
- 【CCPC-Wannafly Winter Camp Day3 (Div1) F】小清新数论(莫比乌斯反演+杜教筛)
点此看题面 大致题意: 让你求出\(\sum_{i=1}^n\sum_{j=1}^n\mu(gcd(i,j))\). 莫比乌斯反演 这种题目,一看就是莫比乌斯反演啊!(连莫比乌斯函数都有) 关于莫比乌 ...
- 51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】
用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i= ...
- [HDU 5608]Function(莫比乌斯反演 + 杜教筛)
题目描述 有N2−3N+2=∑d∣Nf(d)N^2-3N+2=\sum_{d|N} f(d)N2−3N+2=∑d∣Nf(d) 求∑i=1Nf(i)\sum_{i=1}^{N} f(i)∑i=1Nf ...
- BSOJ5467 [CSPX2017#3]整数 莫比乌斯反演+杜教筛
题意简述 给你两个整数\(n\),\(k\),让你求出这个式子 \[ \sum_{a_1=1}^n \sum_{a_2=a_1}^n \sum_{a_3=a_2}^n \cdots \sum_{a_k ...
随机推荐
- 洛谷—— P1097 统计数字
https://www.luogu.org/problem/show?pid=1097 题目描述 某次科研调查时得到了n个自然数,每个数均不超过1500000000(1.5*10^9).已知不相同的数 ...
- POJ 2008
这道题,说实话,细节很多.不过,我没想到,光细节就能搞死人了... 参考了http://www.cppblog.com/varg-vikernes/archive/2010/03/12/109559. ...
- Python 字符串 String 内建函数大全(1)
关于 Python 的字符串处理相关的方法还是许多的.因为我正在学习 Python,于是就把 Python 中这些混杂的用于 string 的函数总结出来,在自己忘记的时候便于查找,希望对于有相似需求 ...
- win7_64
转到YLMF DOS工具,输入ghost然后回车 enter后 选择options进入
- sikuli_ide打开提示没有对应的javaw
对于sikuli,需要安装32位的jdk且不能高于1.7的版本 对于64位系统的C盘,Program Files文件夹是64位的,Program File(x86)文件夹是32位的 需要安装一个32位 ...
- c++11 实现半同步半异步线程池
感受: 随着深入学习,现代c++给我带来越来越多的惊喜- c++真的变强大了. 半同步半异步线程池: 事实上非常好理解.分为三层 同步层:通过IO复用或者其它多线程多进程等不断的将待处理事件加入到队列 ...
- [BZOJ 2100] Apple Delivery
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=2100 [算法] Answer = min{ dist(PB,PA1) + dist( ...
- LinkedHashMap做缓存
项目上需要写一个缓存,这样就不需要频繁地访问数据库,我使用的是 //缓存 private final Map<String, JSONArray> schemaCache = new Li ...
- C - Young Physicist
Problem description A guy named Vasya attends the final grade of a high school. One day Vasya decide ...
- 【Oracle】跟踪文件目录(User_Dump_Dest)生成脚本(11g/9i).txt
oracle 11g 生成跟踪目录(User_Dump_Dest)脚本: –设置合适显示长度: column trace new_val TRACE format a100 –脚本: select c ...