洛谷P1850 换教室_数学期望_Floyd
调了一下午QAQ…让我对数学期望的理解又提升了一个层次。
首先,我们发现 v<=300v<=300v<=300 , 这样我们就可以用 FloydFloydFloyd 算法来 O(n3)O(n^3)O(n3) 处理出任意两点间的最短路。
对于题目,我们不难列出状态dp[i][j][0/1]dp[i][j][0/1]dp[i][j][0/1]。
这个状态代表:走到第iii个点,用了jjj次机会,当前使用了(0表示未使用,1表示使用)机会的最小期望值。
首先,我们考虑dp[i][j][0]dp[i][j][0]dp[i][j][0],那么上一个点可能使用了机会,也可能未使用机会。
不难列出未使用机会的方程:
dp[i][j][0]=dp[i−1][j][0]+f[ci−1][ci]dp[i][j][0]=dp[i-1][j][0]+f[c_{i-1}][c_{i}]dp[i][j][0]=dp[i−1][j][0]+f[ci−1][ci]
那么对于上一次使用了机会,方程应为:
dp[i][j][0]=dp[i−1][j][1]+f[ci−1][ci]∗(1−k[i−1])+f[di−1][ci]∗k[i−1]dp[i][j][0]=dp[i-1][j][1] + f[c_{i-1}][c_{i}] * (1 - k[i-1]) + f[
d_{i-1}][c_{i}] * k[i-1]dp[i][j][0]=dp[i−1][j][1]+f[ci−1][ci]∗(1−k[i−1])+f[di−1][ci]∗k[i−1]
体会一下,上一次使用机会的话会面临两种情况:
1.交换成功,路程为f[di−1][ci]f[d_{i-1}][c_{i}]f[di−1][ci],概率为k[i−1]k[i-1]k[i−1].
2.未交换成功,路程为f[ci−1][ci]f[c_{i-1}][c_{i}]f[ci−1][ci],概率为1−k[i−1]1-k[i-1]1−k[i−1].
再考虑一下当前使用机会,分6种情况。
1.上一轮未交换,当前交换失败:路程为f[ci−1][ci]f[c_{i-1}][c_{i}]f[ci−1][ci],概率为1−k[i]1-k[i]1−k[i]
2.上一轮未交换,当前交换成功:路程为f[ci−1][di]f[c_{i-1}][d_{i}]f[ci−1][di],概率为k[i]k[i]k[i]
3.上一轮交换失败,当前交换失败,路程为f[ci−1][ci]f[c_{i-1}][c_{i}]f[ci−1][ci],概率为(1−k[i−1])∗(1−k[i])(1-k[i-1])*(1-k[i])(1−k[i−1])∗(1−k[i])
4.上一轮交换失败,当前交换成功,路程为f[ci−1][di]f[c_{i-1}][d_{i}]f[ci−1][di],概率为(1−k[i−1])∗k[i](1-k[i-1])*k[i](1−k[i−1])∗k[i]
5.上一轮交换成功,当前交换失败,路程为f[di−1][ci]f[d_{i-1}][c_{i}]f[di−1][ci],概率为k[i−1]∗(1−k[i])k[i-1]*(1-k[i])k[i−1]∗(1−k[i])
6.上一轮交换成功,当前交换成功,路程为f[di−1][di]f[d_{i-1}][d_{i}]f[di−1][di],概率为k[i−1]∗k[i]k[i-1]*k[i]k[i−1]∗k[i]
最后将所有信息合并即可,另外细节巨多,到注意初始化。
Code:
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn = 350;
const int N = 2000 + 5;
const double inf = 1000000000;
int f[maxn][maxn], c[N], d[N], n,m,v,e;
double k[N], dp[N][N][2];
inline void update(double &a, double b){ if(b < a) a = b;}
int main()
{
scanf("%d%d%d%d",&n,&m,&v,&e);
for(int i = 1;i <= n; ++i) scanf("%d",&c[i]);
for(int i = 1;i <= n; ++i) scanf("%d",&d[i]);
for(int i = 1;i <= n; ++i) scanf("%lf",&k[i]);
for(int i = 1;i <= v; ++i) for(int j = 1;j <= v; ++j) f[i][j] = f[j][i] = inf;
for(int i = 1;i <= e; ++i)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
f[a][b] = f[b][a] = min(f[a][b], c);
}
for(int i = 0;i <= v; ++i) f[i][0] = f[0][i] = f[i][i] = 0;
for(int k = 1;k <= v; ++k)
for(int i = 1;i <= v; ++i)
for(int j = 1;j <= v; ++j)
if(f[i][k] != inf && f[k][j] != inf)f[i][j] = min(f[i][j], f[i][k] + f[k][j]);
for (int i = 0; i <= n; ++i)
for (int j = 0; j <= m; ++j)dp[i][j][0] = dp[i][j][1] = inf;
dp[1][0][0] = dp[1][1][1] = dp[0][0][0] = 0;
for(int i = 1;i <= n; ++i)
{
dp[i][0][0] = dp[i-1][0][0] + f[c[i-1]][c[i]];
for(int j = 1;j <= min(i,m); ++j)
{
update(dp[i][j][0], dp[i-1][j][0] + f[c[i-1]][c[i]]);
update(dp[i][j][0], dp[i-1][j][1] + f[c[i-1]][c[i]] * (1 - k[i-1]) + f[d[i-1]][c[i]] * k[i-1]);
if(j >= 1)
{
double tmp = 0.0;
update(dp[i][j][1], dp[i-1][j-1][0] + f[c[i-1]][d[i]] * k[i] + f[c[i-1]][c[i]] * (1 - k[i]));
tmp = dp[i-1][j-1][1];
tmp += f[c[i-1]][c[i]] * (1 - k[i-1]) * (1 - k[i]);
tmp += f[d[i-1]][c[i]] * k[i-1] * (1 - k[i]);
tmp += f[c[i-1]][d[i]] * (1 - k[i-1]) * k[i];
tmp += f[d[i-1]][d[i]] * k[i-1] * k[i];
update(dp[i][j][1], tmp);
}
}
}
double ans = inf;
for(int j = 0;j <= m; ++j)
{
update(ans, dp[n][j][0]);
update(ans, dp[n][j][1]);
}
printf("%.2f",ans);
return 0;
}
洛谷P1850 换教室_数学期望_Floyd的更多相关文章
- 洛谷——P1850 换教室
P1850 换教室 有 2n 节课程安排在 nn 个时间段上.在第 i个时间段上,两节内容相同的课程同时在不同的地点进行,其中,牛牛预先被安排在教室 $c_i$ 上课,而另一节课程在教室 $d_i$ ...
- 洛谷 P1850 换教室
P1850 换教室 题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有 2n2n 节课程安排在 nn 个时间段上.在第 ii(1 \leq ...
- 洛谷 P1850 换教室 解题报告
P1850 换教室 题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有\(2n\)节课程安排在\(n\)个时间段上.在第\(i(1≤i≤n) ...
- 洛谷P1850换教室
题目传送门 理解题意:给定你一个学期的课程和教室数量以及教室之间的距离还有换教室成功的概率,求一个学期走的距离的期望最小值 题目是有够恶心的,属于那种一看就让人不想刷的题目...很明显的动规,但是那个 ...
- 洛谷P1850 换教室 [noip2016] 期望dp
正解:期望dp 解题报告: 哇我发现我期望这块真的布星,可能在刷了点儿NOIp之后会去搞一波期望dp的题...感觉连基础都没有打扎实?基础概念都布星! 好那先把这题理顺了嗷qwq 首先我们看到期望就会 ...
- 洛谷P1850 换教室
令人印象深刻的状态转移方程... f[i][j][0/1]表示前i个换j次,第i次是否申请时的期望. 注意可能有重边,自环. 转移要分类讨论,距离是上/这次成功/失败的概率乘相应的路程. 从上次的0/ ...
- 洛谷P1850 换教室(概率dp)
传送门 我的floyd竟然写错了?今年NOIP怕不是要爆零了? 这就是一个概率dp 我们用$dp[i][j][k]$表示在第$i$个时间段,已经申请了$j$次,$k$表示本次换或不换,然后直接暴力转移 ...
- bzoj4720 / P1850 换教室(Floyd+期望dp)
P1850 换教室 先用Floyd把最短路处理一遍,接下来就是重头戏了 用 f [ i ][ j ][ 0/1 ] 表示在第 i 个时间段,发出了 j 次申请(注意不一定成功),并且在这个时间段是否( ...
- Luogu P1850 换教室(期望dp)
P1850 换教室 题意 题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有\(2n\)节课程安排在\(n\)个时间段上.在第\(i(1\l ...
随机推荐
- django异常--数据库同步
在新创建的Django项目中执行makemigrations时,遇到: 而仔细观察,这个报错的app名字是我们之前项目中的app名字,但现在却在我们当前的项目中报错了.究其原因,则是因为之前的项目中的 ...
- 关于autoupgader的狗屎问题
由于win7和xp的权限问题,导致这个自动升级玩意不正常.这个狗屎问题很简单,把exe文件的兼容性设定该一下.真是气死洒家了.
- Java基础学习总结(67)——Java接口API中使用数组的缺陷
如果你发现在一个接口使用有如下定义方法: public String[] getParameters(); 那么你应该认真反思.数组不仅仅老式,而且我们有合理的理由避免暴露它们.在这篇文章中,我将试图 ...
- (13)处理静态资源(默认资源映射)【从零开始学Spring Boot】
Spring Boot 默认为我们提供了静态资源处理,使用 WebMvcAutoConfiguration 中的配置各种属性. 建议大家使用Spring Boot的默认配置方式,如果需要特殊处理的再通 ...
- 我要带徒弟学JAVA架构 ( 写架构,非用架构 )
80元,当然我不觉得我带的徒弟比花了1万多在培训班学习的学生差,你努力了.会比他们出色的多.等你学有所成.相同能够成为jeecg核心成员之中的一个.一起构建Java学习平台.你也能够成为非常好的师傅. ...
- Java枚举类型使用示例
Java枚举类型使用示例 学习了:https://www.cnblogs.com/zhaoyanjun/p/5659811.html http://blog.csdn.net/qq_27093465/ ...
- 【SpringMVC架构】SpringMVC入门实例,解析工作原理(二)
上篇博文,我们简单的介绍了什么是SpringMVC.这篇博文.我们搭建一个简单SpringMVC的环境,使用非注解形式实现一个HelloWorld实例,从简单入手,逐步深入. 环境准备 我们须要有主要 ...
- java 源代码的魅力
学习一种语言: 最快的方法.就是研究其源码. 从源码中可以体会到各种经典的思想! 赞赏一下: 比如: 我们在写一些 冒泡和选择排序的时候用的 交换: /** * Swaps x[a] ...
- Project Euler:Problem 77 Prime summations
It is possible to write ten as the sum of primes in exactly five different ways: 7 + 3 5 + 5 5 + 3 + ...
- 写个js动态调整图片宽高 (原创)
<body style="TEXT-ALIGN: center;"> <div id="testID" style="backgro ...