大水题,二项式定理即可(忘得差不多了)

对于一个二项式,\((a+b)^n\)的结果为

\(\sum_{k=0}^{k<=n}C_{n}^{k}a^{n-k}b^k\)

证明:

由数学归纳法,当\(n=1\),左边=\(a+b\),右边=\(C^{0}_{1}a+C_1^1b\)

设\(n=k\)时该式成立,则\(n=k+1\)时,

=\((a+b)^n*(a+b)\)=\(a*\sum_{k=0}^{k<=n}C_{n}^{k}a^{n-k}b^k+b*\sum_{k=0}^{k<=n}C_{n}^{k}a^{n-k}b^k\)

=\(\sum_{k=0}^{k<=n}C_{n}^{k}a^{n-k+1}b^k+\sum_{k=0}^{k<=n}C_{n}^{k}a^{n-k}b^{k+1}\)

=\(\sum_{k=0}^{k<=n+1}C_{n}^{k+1}a^{n-k+1}b^{k+1}\)

markdown真麻烦。。。可能打错一些东西,欢迎拍砖

所以该题代码如下:

#include <iostream>
#include <cstdio>
#include <cstring>
#define int long long
using namespace std;
const int mod=10007;
int n,m,k,a,b,inv[mod+10],fac[mod+10];
int ksm(int d,int z) {
int res=1;
while(z) {
if(z&1) res*=d,res%=mod;
d*=d;d%=mod;
z>>=1;
}
return res;
}
void getinv() {
for(int i=k-1; i>=1; i--)
inv[i]=inv[i+1]*(i+1)%mod;
}
int C(int n,int m) {
return fac[m]*inv[n]%mod*inv[m-n]%mod;
}
signed main() {
cin>>a>>b>>k>>n>>m;
inv[0]=1;
fac[0]=fac[1]=1;
for(int i=2; i<=mod; i++) fac[i]=fac[i-1]*i%mod;
inv[k]=ksm(fac[k],mod-2);
getinv();
cout<<C(n,k)*ksm(a,n)%mod*ksm(b,m)%mod;
}

[noip2011]计算系数+二项式定理证明的更多相关文章

  1. NOIP2011 计算系数

    1计算系数 给定一个多项式 (ax + by)k ,请求出多项式展开后 x n y m 项的系数. [输入] 输入文件名为 factor.in. 共一行,包含 5 个整数,分别为 a,b,k,n,m, ...

  2. [NOIP2011] 计算系数(二项式定理)

    题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...

  3. luoguP1313 [NOIp2011]计算系数 [组合数学]

    题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...

  4. P1313 计算系数[二项式定理]

    题目描述 给定一个多项式\((by+ax)^k\),请求出多项式展开后\(x^n \times y^m\)项的系数. 解析 一道水题,二项式定理搞定.注意递推组合数时对其取模. 参考代码 #inclu ...

  5. NOIP2011计算系数;

    #include<cmath> #include<algorithm> #include<stdio.h> #include<iostream> #de ...

  6. NOIP 2011 计算系数

    洛谷 P1313 计算系数 洛谷传送门 JDOJ 1747: [NOIP2011]计算系数 D2 T1 JDOJ传送门 Description 给定一个多项式(ax + by)k,请求出多项式展开后x ...

  7. 题解 【NOIP2011】计算系数

    [NOIP2011]计算系数 Description 给定一个多项式 (ax+by)^k ,请求出多项式展开后 x^n * y^m 项的系数. Input 共一行,包含 5 个整数,分别为 a,b,k ...

  8. 洛谷P1313 [NOIP2011提高组Day2T1]计算系数

    P1313 计算系数 题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别 ...

  9. 一本通1648【例 1】「NOIP2011」计算系数

    1648: [例 1]「NOIP2011」计算系数 时间限制: 1000 ms         内存限制: 524288 KB [题目描述] 给定一个多项式 (ax+by)k ,请求出多项式展开后 x ...

随机推荐

  1. ZOJ 3209

    精确覆盖 #include <iostream> #include <cstdio> #include <cstring> #include <algorit ...

  2. Android View系统解析(下)

    转载请注明出处:http://blog.csdn.net/singwhatiwanna/article/details/38426471(来自singwhatiwanna的csdn博客) Androi ...

  3. UVa 10297 - Beavergnaw

    题目:假设一个底边与高为D的圆柱切去一部分使得.剩下的中心是底边与高为d的圆柱. 和以他们底面为上下地面的圆锥台,已知切去的体积,求d. 分析:二分,计算几何.圆锥台体积公式:π*(r^2+r*R+R ...

  4. jmeter函数和变量

    函数和变量广泛的应用在JMeter的传参过程,其中函数可以被认为是某种特殊的变量,它们可以被采样器或者其他测试元件所引用. 常用函数 1.__RamdomString() / __Ramdom() 获 ...

  5. [SPOJ VLATTICE]Visible Lattice Points 数论 莫比乌斯反演

    7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...

  6. luogu3911 最小公倍数之和

    题目大意 给出一些数\(A_1,A_2,\cdots A_n\),求 \[\sum_{i=1}^{n}\sum_{j=1}^{n}\mathrm{lcm}(A_i,A_j)\] \(A_i,A_n\l ...

  7. tflearn anaconda 安装过程记录

    准备工作:gcc升级为4.8.2glibc升级为2.18 /opt/xxx/xxx/components/ficlient/bigdata_env 里加入:export LD_LIBRARY_PATH ...

  8. 第17章 Redis概述

    17.2.1 在Windows下安装Redis https://github.com/ServiceStack/redis-windows/tree/master/downloads redis-se ...

  9. BZOJ 2929 网络流

    题意是啥--. 思路: 不是与1或n连起来的边 边权是1 否则是inf 跑网络流 //By SiriusRen #include <queue> #include <cstdio&g ...

  10. 问题集锦 ~ CSS

    #button标签点击后出现点边框 input  {outline: none;} button::-moz-focus-inner {border:  none;}