CUDA多个流的使用
CUDA中使用多个流并行执行数据复制和核函数运算可以进一步提高计算性能。以下程序使用2个流执行运算:
#include "cuda_runtime.h"
#include <iostream>
#include <stdio.h>
#include <math.h>
#define N (1024*1024)
#define FULL_DATA_SIZE N*20
__global__ void kernel(int* a, int *b, int*c)
{
int threadID = blockIdx.x * blockDim.x + threadIdx.x;
if (threadID < N)
{
c[threadID] = (a[threadID] + b[threadID]) / 2;
}
}
int main()
{
//获取设备属性
cudaDeviceProp prop;
int deviceID;
cudaGetDevice(&deviceID);
cudaGetDeviceProperties(&prop, deviceID);
//检查设备是否支持重叠功能
if (!prop.deviceOverlap)
{
printf("No device will handle overlaps. so no speed up from stream.\n");
return 0;
}
//启动计时器
cudaEvent_t start, stop;
float elapsedTime;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start, 0);
//创建两个CUDA流
cudaStream_t stream, stream1;
cudaStreamCreate(&stream);
cudaStreamCreate(&stream1);
int *host_a, *host_b, *host_c;
int *dev_a, *dev_b, *dev_c;
int *dev_a1, *dev_b1, *dev_c1;
//在GPU上分配内存
cudaMalloc((void**)&dev_a, N * sizeof(int));
cudaMalloc((void**)&dev_b, N * sizeof(int));
cudaMalloc((void**)&dev_c, N * sizeof(int));
cudaMalloc((void**)&dev_a1, N * sizeof(int));
cudaMalloc((void**)&dev_b1, N * sizeof(int));
cudaMalloc((void**)&dev_c1, N * sizeof(int));
//在CPU上分配页锁定内存
cudaHostAlloc((void**)&host_a, FULL_DATA_SIZE * sizeof(int), cudaHostAllocDefault);
cudaHostAlloc((void**)&host_b, FULL_DATA_SIZE * sizeof(int), cudaHostAllocDefault);
cudaHostAlloc((void**)&host_c, FULL_DATA_SIZE * sizeof(int), cudaHostAllocDefault);
//主机上的内存赋值
for (int i = 0; i < FULL_DATA_SIZE; i++)
{
host_a[i] = i;
host_b[i] = FULL_DATA_SIZE - i;
}
for (int i = 0; i < FULL_DATA_SIZE; i += 2 * N)
{
cudaMemcpyAsync(dev_a, host_a + i, N * sizeof(int), cudaMemcpyHostToDevice, stream);
cudaMemcpyAsync(dev_b, host_b + i, N * sizeof(int), cudaMemcpyHostToDevice, stream);
cudaMemcpyAsync(dev_a1, host_a + i + N, N * sizeof(int), cudaMemcpyHostToDevice, stream1);
cudaMemcpyAsync(dev_b1, host_b + i + N, N * sizeof(int), cudaMemcpyHostToDevice, stream1);
kernel << <N / 1024, 1024, 0, stream >> > (dev_a, dev_b, dev_c);
kernel << <N / 1024, 1024, 0, stream1 >> > (dev_a, dev_b, dev_c1);
cudaMemcpyAsync(host_c + i, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost, stream);
cudaMemcpyAsync(host_c + i + N, dev_c1, N * sizeof(int), cudaMemcpyDeviceToHost, stream1);
}
// 等待Stream流执行完成
cudaStreamSynchronize(stream);
cudaStreamSynchronize(stream1);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime, start, stop);
std::cout << "消耗时间: " << elapsedTime << std::endl;
//输出前10个结果
for (int i = 0; i < 10; i++)
{
std::cout << host_c[i] << std::endl;
}
getchar();
// free stream and mem
cudaFreeHost(host_a);
cudaFreeHost(host_b);
cudaFreeHost(host_c);
cudaFree(dev_a);
cudaFree(dev_b);
cudaFree(dev_c);
cudaFree(dev_a1);
cudaFree(dev_b1);
cudaFree(dev_c1);
cudaStreamDestroy(stream);
cudaStreamDestroy(stream1);
return 0;
}
使用2个流,执行时间16ms,基本上是使用一个流消耗时间的二分之一。
CUDA多个流的使用的更多相关文章
- CUDA 7 Stream流简化并发性
CUDA 7 Stream流简化并发性 异构计算是指高效地使用系统中的所有处理器,包括 CPU 和 GPU .为此,应用程序必须在多个处理器上并发执行函数. CUDA 应用程序通过在 streams ...
- CUDA中的流与事件
流:CUDA流很像CPU的线程,一个CUDA流中的操作按顺序进行,粗粒度管理多个处理单元的并发执行. 通俗的讲,流用于并行运算,比如处理同一副图,你用一个流处理左边半张图片,再用第二个流处理右边半张图 ...
- 【CUDA 基础】6.5 流回调
title: [CUDA 基础]6.5 流回调 categories: - CUDA - Freshman tags: - 流回调 toc: true date: 2018-06-20 21:56:1 ...
- 【CUDA 基础】6.1 流和事件概述
title: [CUDA 基础]6.1 流和事件概述 categories: - CUDA - Freshman tags: - 流 - 事件 toc: true date: 2018-06-10 2 ...
- 【CUDA 基础】6.0 流和并发
title: [CUDA 基础]6.0 流和并发 categories: - CUDA - Freshman tags: - 流 - 事件 - 网格级并行 - 同步机制 - NVVP toc: tru ...
- CUDA从入门到精通
http://blog.csdn.net/augusdi/article/details/12833235 CUDA从入门到精通(零):写在前面 在老板的要求下.本博主从2012年上高性能计算课程開始 ...
- CUDA从入门到精通 - Augusdi的专栏 - 博客频道 - CSDN.NET
http://blog.csdn.net/augusdi/article/details/12833235 CUDA从入门到精通 - Augusdi的专栏 - 博客频道 - CSDN.NET CUDA ...
- CUDA C Programming Guide 在线教程学习笔记 Part 10【坑】
▶ 动态并行. ● 动态并行直接从 GPU 上创建工作,可以减少主机和设备间数据传输,在设备线程中调整配置.有数据依赖的并行工作可以在内核运行时生成,并利用 GPU 的硬件调度和负载均衡.动态并行要求 ...
- CUDA Samples: Streams' usage
以下CUDA sample是分别用C++和CUDA实现的流的使用code,并对其中使用到的CUDA函数进行了解说,code参考了<GPU高性能编程CUDA实战>一书的第十章,各个文件内容如 ...
随机推荐
- 【剑指offer】对面和相等的正方体
转载请注明出处:http://blog.csdn.net/ns_code/article/details/26509459 剑指offer上的全排列相关题目. 输入一个含有8个数字的数组.推断有么有可 ...
- [Angular2 Router] Configure Auxiliary Routes in the Angular 2 Router - What is the Difference Towards a Primary Route?
In this tutorial we are going to learn how we can can configure redirects in the angular 2 router co ...
- hdu2049(组合数学)
题意:每位新娘打扮得差点儿一模一样,并盖上大大的红盖头随机坐成一排;然后,让各位新郎寻找自己的新娘.每人仅仅准找一个,而且不同意多人找一个.最后,揭开盖头,如果找错了对象就要当众跪搓衣板...如果一共 ...
- Swift语言之View,Button控件实现小方块在界面上的移动(纯代码实现)
import UIKit class ViewController: UIViewController { var diamonds:UIView! var diamondsXY = CGRectMa ...
- bootstrap课程5 bootstrap中的组件使用的注意事项是什么
bootstrap课程5 bootstrap中的组件使用的注意事项是什么 一.总结 一句话总结: 1.img-responsive的作用是什么(其实还是要多看手册)? 看起来像width=100%的效 ...
- swift项目第二天:初始化项目
初始化项目 项目的部署版本 之后项目会运行在哪些系统中 横竖屏的支持 iPhone应用一般只支持横屏 iPhone游戏一般支持竖屏 iPad横竖屏都支持 设置项目的图标和启动图片 项目的图标(美工做好 ...
- bootstrap课程2 bootstrap的栅格系统的主要作用是什么
bootstrap课程2 bootstrap的栅格系统的主要作用是什么 一.总结 一句话总结:响应式布局(就是适应不同的屏幕,手机,平板,电脑) 1.bootstrap的栅格系统如何使用? row ...
- php实现变态跳台阶(记忆化递归)
php实现变态跳台阶(记忆化递归) 一.总结 1.本题思路(分类讨论思路,注意初始值和边界值):第一步如果1,那剩下的就是jumpFloorII($number-1)(下面jumpFloorII以j表 ...
- POJ 1065 Wooden Sticks(zoj 1025) 最长单调子序列
POJ :http://poj.org/problem?id=1065 ZOJ: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId= ...
- 7、基于嵌入式Linux的视频采集系统---UVC驱动模型介绍
UVC 即 usb video class.USB协议中,除了通用的软硬件电气接口规范等,还包含了各种各样的Class协议,用来为不同的功能定义各自的标准接口和具体的总线上的数据交互格式和内容.这些C ...