Deadlock Detecting--转
/*
Java Threads, 3rd Edition
By Scott Oaks, Henry Wong
3rd Edition September 2004
ISBN: 0-596-00782-5 */
import java.util.*;
import java.util.concurrent.*;
import java.util.concurrent.locks.*; //
// This is a very very slow implementation of a ReentrantLock class and is not
// for
// everyday usage. The purpose of this class is to test for deadlocks. The
// lock()
// method now throws a DeadlockDetectedException, if a deadlock occurs.
//
public class DeadlockDetectingLock extends ReentrantLock {
// List of deadlock detecting locks.
// This array is not thread safe, and must be externally synchronized
// by the class lock. Hence, it should only be called by static
// methods.
private static List deadlockLocksRegistry = new ArrayList(); private static synchronized void registerLock(DeadlockDetectingLock ddl) {
if (!deadlockLocksRegistry.contains(ddl))
deadlockLocksRegistry.add(ddl);
} private static synchronized void unregisterLock(DeadlockDetectingLock ddl) {
if (deadlockLocksRegistry.contains(ddl))
deadlockLocksRegistry.remove(ddl);
} // List of threads hard waiting for this lock.
// This array is not thread safe, and must be externally synchronized
// by the class lock. Hence, it should only be called by static
// methods.
private List hardwaitingThreads = new ArrayList(); private static synchronized void markAsHardwait(List l, Thread t) {
if (!l.contains(t))
l.add(t);
} private static synchronized void freeIfHardwait(List l, Thread t) {
if (l.contains(t))
l.remove(t);
} //
// Deadlock checking methods
//
// Given a thread, return all locks that are already owned
// Must own class lock prior to calling this method
private static Iterator getAllLocksOwned(Thread t) {
DeadlockDetectingLock current;
ArrayList results = new ArrayList(); Iterator itr = deadlockLocksRegistry.iterator();
while (itr.hasNext()) {
current = (DeadlockDetectingLock) itr.next();
if (current.getOwner() == t)
results.add(current);
}
return results.iterator();
} // Given a lock, return all threads that are hard waiting for the lock
// Must own class lock prior to calling this method
private static Iterator getAllThreadsHardwaiting(DeadlockDetectingLock l) {
return l.hardwaitingThreads.iterator();
} // Check to see if a thread can perform a hard wait on a lock
private static synchronized boolean canThreadWaitOnLock(Thread t,
DeadlockDetectingLock l) {
Iterator locksOwned = getAllLocksOwned(t);
while (locksOwned.hasNext()) {
DeadlockDetectingLock current = (DeadlockDetectingLock) locksOwned
.next(); // Thread can't wait if lock is already owned. This is the end
// condition
// for the recursive algorithm -- as the initial condition should be
// already tested for.
if (current == l)
return false; Iterator waitingThreads = getAllThreadsHardwaiting(current);
while (waitingThreads.hasNext()) {
Thread otherthread = (Thread) waitingThreads.next(); // In order for the thread to safely wait on the lock, it can't
// own any locks that have waiting threads that already owns
// lock. etc. etc. etc. recursively etc.
if (!canThreadWaitOnLock(otherthread, l)) {
return false;
}
}
}
return true;
} //
// Core Constructors
//
public DeadlockDetectingLock() {
this(false, false);
} public DeadlockDetectingLock(boolean fair) {
this(fair, false);
} private boolean debugging; public DeadlockDetectingLock(boolean fair, boolean debug) {
super(fair);
debugging = debug;
registerLock(this);
} //
// Core Methods
//
public void lock() {
// Note: Owner can't change if current thread is owner. It is
// not guaranteed otherwise. Other owners can change due to
// condition variables.
if (isHeldByCurrentThread()) {
if (debugging)
System.out.println("Already Own Lock");
super.lock();
freeIfHardwait(hardwaitingThreads, Thread.currentThread());
return;
} // Note: The wait list must be marked before it is tested because
// there is a race condition between lock() method calls.
markAsHardwait(hardwaitingThreads, Thread.currentThread());
if (canThreadWaitOnLock(Thread.currentThread(), this)) {
if (debugging)
System.out.println("Waiting For Lock");
super.lock();
freeIfHardwait(hardwaitingThreads, Thread.currentThread());
if (debugging)
System.out.println("Got New Lock");
} else {
throw new DeadlockDetectedException("DEADLOCK");
}
} //
// Note: It is debatable whether this is a hard or soft wait. Even if
// interruption is common, we don't know if the interrupting thread
// is also involved in the deadlock. As a compromise, we'll just
// not allow interrupts. This method is disabled.
public void lockInterruptibly() throws InterruptedException {
lock();
} //
// Note: It is not necessary to override the tryLock() methods. These
// methods perform a soft wait -- there is a limit to the wait. It
// not possible to deadlock when locks are not waiting indefinitely.
// // Note 1: Deadlocks are possible with any hard wait -- this includes
// the reacquitition of the lock upon return from an await() method.
// As such, condition variables will mark for the future hard
// wait, prior to releasing the lock.
// Note 2: There is no need to check for deadlock on this end because
// a deadlock can be created whether the condition variable owns the
// lock or is reacquiring it. Since we are marking *before* giving
// up ownership, the deadlock will be detected on the lock() side
// first. It is not possible to create a new deadlock just by releasing
// locks.
public class DeadlockDetectingCondition implements Condition {
Condition embedded; protected DeadlockDetectingCondition(ReentrantLock lock,
Condition embedded) {
this.embedded = embedded;
} // Note: The algorithm can detect a deadlock condition if the thead is
// either waiting for or already owns the lock, or both. This is why
// we have to mark for waiting *before* giving up the lock.
public void await() throws InterruptedException {
try {
markAsHardwait(hardwaitingThreads, Thread.currentThread());
embedded.await();
} finally {
freeIfHardwait(hardwaitingThreads, Thread.currentThread());
}
} public void awaitUninterruptibly() {
markAsHardwait(hardwaitingThreads, Thread.currentThread());
embedded.awaitUninterruptibly();
freeIfHardwait(hardwaitingThreads, Thread.currentThread());
} public long awaitNanos(long nanosTimeout) throws InterruptedException {
try {
markAsHardwait(hardwaitingThreads, Thread.currentThread());
return embedded.awaitNanos(nanosTimeout);
} finally {
freeIfHardwait(hardwaitingThreads, Thread.currentThread());
}
} public boolean await(long time, TimeUnit unit)
throws InterruptedException {
try {
markAsHardwait(hardwaitingThreads, Thread.currentThread());
return embedded.await(time, unit);
} finally {
freeIfHardwait(hardwaitingThreads, Thread.currentThread());
}
} public boolean awaitUntil(Date deadline) throws InterruptedException {
try {
markAsHardwait(hardwaitingThreads, Thread.currentThread());
return embedded.awaitUntil(deadline);
} finally {
freeIfHardwait(hardwaitingThreads, Thread.currentThread());
}
} public void signal() {
embedded.signal();
} public void signalAll() {
embedded.signalAll();
}
} // Return a condition variable that support detection of deadlocks
public Condition newCondition() {
return new DeadlockDetectingCondition(this, super.newCondition());
} //
// Testing routines here
//
// These are very simple tests -- more tests will have to be written
private static Lock a = new DeadlockDetectingLock(false, true); private static Lock b = new DeadlockDetectingLock(false, true); private static Lock c = new DeadlockDetectingLock(false, true); private static Condition wa = a.newCondition(); private static Condition wb = b.newCondition(); private static Condition wc = c.newCondition(); private static void delaySeconds(int seconds) {
try {
Thread.sleep(seconds * 1000);
} catch (InterruptedException ex) {
}
} private static void awaitSeconds(Condition c, int seconds) {
try {
c.await(seconds, TimeUnit.SECONDS);
} catch (InterruptedException ex) {
}
} private static void testOne() {
new Thread(new Runnable() {
public void run() {
System.out.println("thread one grab a");
a.lock();
delaySeconds(2);
System.out.println("thread one grab b");
b.lock();
delaySeconds(2);
a.unlock();
b.unlock();
}
}).start(); new Thread(new Runnable() {
public void run() {
System.out.println("thread two grab b");
b.lock();
delaySeconds(2);
System.out.println("thread two grab a");
a.lock();
delaySeconds(2);
a.unlock();
b.unlock();
}
}).start();
} private static void testTwo() {
new Thread(new Runnable() {
public void run() {
System.out.println("thread one grab a");
a.lock();
delaySeconds(2);
System.out.println("thread one grab b");
b.lock();
delaySeconds(10);
a.unlock();
b.unlock();
}
}).start(); new Thread(new Runnable() {
public void run() {
System.out.println("thread two grab b");
b.lock();
delaySeconds(2);
System.out.println("thread two grab c");
c.lock();
delaySeconds(10);
b.unlock();
c.unlock();
}
}).start(); new Thread(new Runnable() {
public void run() {
System.out.println("thread three grab c");
c.lock();
delaySeconds(4);
System.out.println("thread three grab a");
a.lock();
delaySeconds(10);
c.unlock();
a.unlock();
}
}).start();
} private static void testThree() {
new Thread(new Runnable() {
public void run() {
System.out.println("thread one grab b");
b.lock();
System.out.println("thread one grab a");
a.lock();
delaySeconds(2);
System.out.println("thread one waits on b");
awaitSeconds(wb, 10);
a.unlock();
b.unlock();
}
}).start(); new Thread(new Runnable() {
public void run() {
delaySeconds(1);
System.out.println("thread two grab b");
b.lock();
System.out.println("thread two grab a");
a.lock();
delaySeconds(10);
b.unlock();
c.unlock();
}
}).start(); } public static void main(String args[]) {
int test = 1;
if (args.length > 0)
test = Integer.parseInt(args[0]);
switch (test) {
case 1:
testOne(); // 2 threads deadlocking on grabbing 2 locks
break;
case 2:
testTwo(); // 3 threads deadlocking on grabbing 2 out of 3 locks
break;
case 3:
testThree(); // 2 threads deadlocking on 2 locks with CV wait
break;
default:
System.err.println("usage: java DeadlockDetectingLock [ test# ]");
}
delaySeconds(60);
System.out.println("--- End Program ---");
System.exit(0);
}
} class DeadlockDetectedException extends RuntimeException { public DeadlockDetectedException(String s) {
super(s);
}
}
Deadlock Detecting--转的更多相关文章
- MemcacheQ 安装与使用
MemcacheQ 是一个基于 MemcacheDB 的消息队列服务器.官网地址:http://memcachedb.org/memcacheq/ 特点: 1.简单易用. 2.处理速度快. 3.可创建 ...
- MemcacheQ安装及使用
一.MemcacheQ安装记录1.安装libevent查看是否已经安装了libeventrpm -qa|grep libevent如果没有安装使用yum安装yum install libevent l ...
- 持久化消息队列memcacheq的安装配置
MemcacheQ 是一个基于 MemcacheDB 的消息队列服务器. 一.memcacheq介绍 特性: 1.简单易用 2.处理速度快 3.多条队列 4.并发性能好 5.与memcache的协议兼 ...
- Troubleshooting "Global Enqueue Services Deadlock detected" (Doc ID 1443482.1)
In this Document _afrLoop=1021148011984950&id=1443482.1&displayIndex=1&_afrWindowMode= ...
- 又踩.NET Core的坑:在同步方法中调用异步方法Wait时发生死锁(deadlock)
之前在将 Memcached 客户端 EnyimMemcached 迁移 .NET Core 时被这个“坑”坑的刻骨铭心(详见以下链接),当时以为只是在构造函数中调用异步方法(注:这里的异步方法都是指 ...
- 【转】Deadlock的一些总结(死锁分析及处理)
1.1.1 摘要 在系统设计过程中,系统的稳定性.响应速度和读写速度至关重要,就像12306.cn那样,当然我们可以通过提高系统并发能力来提高系统性能总体性能,但在并发作用下也会出现一些问题,例如死锁 ...
- 论文阅读(Xiang Bai——【CVPR2012】Detecting Texts of Arbitrary Orientations in Natural Images)
Xiang Bai--[CVPR2012]Detecting Texts of Arbitrary Orientations in Natural Images 目录 作者和相关链接 方法概括 方法细 ...
- Oracle Deadlock / 死锁 处理
Get the directory of alert log sqlplus / as sysdba show parameters udmp SQL> show parameters dump ...
- [No00003D]操作系统Operating Systems信号量的代码实现Coding Semaphore &死锁处理Deadlock
操作系统Operating Systems信号量的代码实现Coding Semaphore &死锁处理Deadlock 可以操刀了—从纸上到实际 从Linux 0.11 那里学点东西… 读磁盘 ...
随机推荐
- Xamarin的不归路-生成安卓错误2
错误提示: 解决方案:升级Android sdk到Android6.0即API23重新编译即可. Android版本较低的手机如何使用? 你只需要编译和目标设定为6.0,根据需要设置最低A ...
- Reversing Linked List
原题连接:https://www.patest.cn/contests/pat-a-practise/1074 题目: Given a constant K and a singly linked l ...
- C及C++中typedef的简单使用指南
又是在学数据结构的时候,发现了之前学习的知识遗忘很多,在发现对C/C++中关键字typedef的理解还是没有到位后,我翻阅了学C++用到的课本,又问了度娘,也看了不少关于typedef用法的博客.于是 ...
- 内存不足时,调用ajax报的错
在error中遍历出来的异常 很难见
- SQL——行值表达式(Row Value Expressions)
概述 最近接触了一个新概念——行值表达式,也叫做行值构造器.这是一个很强大的SQL功能,通常我们所操作的SQL表达式都只能针对一行中的单一字段进行操作比较,而行值表达式可以针对一行中的多个字段进行操作 ...
- 用 string 进行插入、替代、查找输出下标等操作
string s; s = "; string::iterator it; it = s.begin();//让s指向第一个元素 cout << s; system(" ...
- Visual Studio 2015 CTP6 发布
微软发布ASP.NET 5 支持在Windows.Mac和Linux上构建程序,Visual Studio 2015 CTP6(社区预览版)现已发布了.感兴趣的朋友们可以登录官网下载[http://w ...
- TcpClient 有好多坑
下面2篇文章里头的问题都碰到了,真是好坑哈, 在此留念. 使用 TcpClient 與 NetworkStream 類別開發時的注意事項 [C#] NetworkStream.Write()存在严重b ...
- 一个App完成入门篇(七)- 完成发现页面
第七章是入门篇的倒数第二篇文章了,明天整个APP将进入收官. 本节教程主要要教会大家使用二维码扫描和用do_WebView组件加在html页面. 导入项目 do_WebView组件 扫描功能 自定义事 ...
- nodejs事件轮询详述
目录 概述 nodejs特点 事件轮询 关于异步方法 概述 关于nodejs的介绍网上资料非常多,最近由于在整理一些函数式编程的资料时,多次遇到nodejs有关的内容.所以就打算专门写一篇文章总结一下 ...