HDU 3306
先转一些 http://www.cnblogs.com/frog112111/archive/2013/05/19/3087648.html
Fibonacci数列:F(0)=1 , F(1)=1 , F(n)=F(n-1)+F(n-2)
我们以前快速求Fibonacci数列第n项的方法是 构造常系数矩阵
(一) Fibonacci数列f[n]=f[n-1]+f[n-2],f[1]=f[2]=1的第n项快速求法(不考虑高精度)
解法:
考虑1×2的矩阵【f[n-2],f[n-1]】。根据Fibonacci数列的递推关系,我们可以通过乘以一个2×2的矩阵A,得到矩阵:【f[n-1],f[n]】。
即:【f[n-2],f[n-1]】*A = 【f[n-1],f[n]】=【f[n-1],f[n-1]+f[n-2]】
很容易构造出这个2×2矩阵A,即:
0 1
1 1
所以,有【f[1],f[2]】×A=【f[2],f[3]】
又因为矩阵乘法满足结合律,故有:
【f[1],f[2]】×A ^(n-1) =【f[n],f[n+1]】
这个矩阵的第一个元素f[n]即为所求。
(二) 数列f[n]=f[n-1]+f[n-2]+1,f[1]=f[2]=1的第n项的快速求法(不考虑高精度)
解法:
仿照前例,考虑1×3的矩阵【f[n-2],f[n-1],1】,希望求得某3×3的矩阵A,使得此1×3的矩阵乘以A得到矩阵:【f[n-1],f[n],1】
即:【f[n-2],f[n-1],1】* A =【f[n-1],f[n],1】=【f[n-1],f[n-1]+f[n-2]+1,1】
容易构造出这个3×3的矩阵A,即:
0 1 0
1 1 0
0 1 1
故:【f[1],f[2],1】* A^(n-1) = 【f[n],f[n+1],1】
(三)数列f[n]=f[n-1]+f[n-2]+n+1,f[1]=f[2]=1的第n项的快速求法(不考虑高精度).
解法:
仿照前例,考虑1×4的矩阵【f[n-2],f[n-1],n,1】,希望求得某4×4的矩阵A,使得此1×4的矩阵乘以A得到矩阵:【f[n-1],f[n],n+1,1】
即:【f[n-2],f[n-1],n,1】* A = 【f[n-1],f[n],n+1,1】=【f[n-1],f[n-1]+f[n-2]+n+1,n+1,1】
容易构造出这个4×4的矩阵A,即:
0 1 0 0
1 1 0 0
0 1 1 0
0 1 1 1
故:【f[1],f[2],3,1】* A^(n-1) = 【f[n],f[n+1],n+2,1】
(四) 数列f[n]=f[n-1]+f[n-2],f[1]=f[2]=1的前n项和s[n]=f[1]+f[2]+……+f[n]的快速求法(不考虑高精度).
解法:
仿照之前的思路,考虑1×3的矩阵【f[n-2],f[n-1],s[n-2]】,我们希望通过乘以一个3×3的矩阵A,得到1×3的矩阵:【f[n-1],f[n],s[n-1]】
即:【f[n-2],f[n-1],s[n-2]】 * A = 【f[n-1],f[n],s[n-1]】=【f[n-1],f[n-1]+f[n-2],s[n-2]+f[n-1]】
容易得到这个3×3的矩阵A是:
0 1 0
1 1 1
0 0 1
这种方法的矩阵规模是(r+1)*(r+1)
f(1)=f(2)=s(1)=1 ,所以,有
【f(1),f(2),s(1)】* A = 【f(2),f(3),s(2)】
故:【f(1),f(2),s(1)】* A^(n-1) = 【f(n),f(n+1),s(n)】
(五) 数列f[n]=f[n-1]+f[n-2]+n+1,f[1]=f[2]=1的前n项和s[n]=f[1]+f[2]+……+f[n]的快速求法(不考虑高精度).
解法:
考虑1×5的矩阵【f[n-2],f[n-1],s[n-2],n,1】,
我们需要找到一个5×5的矩阵A,使得它乘以A得到如下1×5的矩阵【f[n-1],f[n],s[n-1],n+1,1】
即:【f[n-2],f[n-1],s[n-2],n,1】* A =【f[n-1],f[n],s[n-1],n+1,1】
=【f[n-1], f[n-1]+f[n-2]+n+1,s[n-2]+f[n-1],n+1,1】
容易构造出A为:
0 1 0 0 0
1 1 1 0 0
0 0 1 0 0
0 1 0 1 0
0 1 0 1 1
故:【f(1),f(2),s(1),3,1】* A^(n-1) = 【f(n),f(n+1),s(n),n+2,1】
一般地,如果有f[n]=p*f[n-1]+q*f[n-2]+r*n+s
可以构造矩阵A为:
0 q 0 0 0
1 p 1 0 0
0 0 1 0 0
0 r 0 1 0
0 s 0 1 1
更一般的,对于f[n]=Sigma(a[n-i]*f[n-i])+Poly(n),其中0<i<=某常数c, Poly (n)表示n的多项式,我们依然可以构造类似的矩阵A来解决问题。
设Degree(Poly(n))=d, 并规定Poly(n)=0时,d=-1,此时对应于常系数线性齐次递推关系。则本方法求前n项和的复杂度为:
((c+1)+(d+1))3*logns
---------------------------------------以上为转
这样,这道题就不难解决了,决定好一个1X4的矩阵后,再按递推填一个4X4的就可以了。
可以发现这个1X4的就是 (S(N-2),AN-2,AN-1,AN-1*AN-2)哈哈,自己推出来的,完美解决了。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; struct Matrax {
int m[4][4];
};
int tms[4];
Matrax a,per;
int n=4,M=10007;
int N,X,Y;
void init(){
int i,j;
memset(per.m,0,sizeof(per.m));
memset(a.m,0,sizeof(a.m));
for(i=0;i<n;i++){
per.m[i][i]=1;
}
a.m[0][0]=a.m[2][0]=a.m[2][1]=1;
a.m[1][2]=((Y%M)*(Y%M))%M;; a.m[2][2]=((X%M)*(X%M))%M;
a.m[3][2]=(2*(X%M)*(Y%M))%M; a.m[2][3]=X%M; a.m[3][3]=Y%M;
} Matrax multi(Matrax a,Matrax b){
Matrax c;
int k,i,j;
for(i=0;i<n;i++){
for(j=0;j<n;j++){
c.m[i][j]=0;
for(k=0;k<n;k++){
c.m[i][j]=(c.m[i][j]+(a.m[i][k]*b.m[k][j])%M)%M;
}
}
}
return c;
} Matrax Power(int k){
Matrax c,p,ans=per;
p=a;
while(k){
if(k&1){
ans=multi(ans,p);
k--;
}
else{
k/=2;
p=multi(p,p);
}
}
return ans;
} int main(){
while(scanf("%d%d%d",&N,&X,&Y)!=EOF){
init();
// cout<<"No"<<endl;
if(N==0){
printf("1\n"); continue;
}
tms[0]=tms[1]=tms[2]=tms[3]=1;
Matrax t=Power(N);
// cout<<"YES"<<endl;
int ans=0;
for(int i=0;i<4;i++)
ans=(ans+(tms[i]*t.m[i][0]))%M;
printf("%d\n",ans);
}
}
HDU 3306的更多相关文章
- HDU 3306 Another kind of Fibonacci ---构造矩阵***
Another kind of Fibonacci Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- HDU 3306 Another kind of Fibonacci(快速幂矩阵)
题目链接 构造矩阵 看的题解,剩下的就是模板了,好久没写过了,注意取余. #include <cstring> #include <cstdio> #include <s ...
- HDU 3306 - Another kind of Fibonacci
给你 A(0) = 1 , A(1) = 1 , A(N) = X * A(N - 1) + Y * A(N - 2) (N >= 2). 求 S(N) = A(0) 2 +A(1) 2+……+ ...
- HDU 3306 Another kind of Fibonacci(矩阵+ll超时必须用int&输入必须取模&M必须是int类型)
Another kind of Fibonacci [题目链接]Another kind of Fibonacci [题目类型]矩阵+ll超时必须用int&输入必须取模&M必须是int ...
- hdu 3306 Another kind of Fibonacci(矩阵高速幂)
Another kind of Fibonacci Time Limit: 3000/10 ...
- hdu 3306 Another kind of Fibonacci 矩阵快速幂
参考了某大佬的 我们可以根据(s[n-2], a[n-1]^2, a[n-1]*a[n-2], a[n-2]^2) * A = (s[n-1], a[n]^2, a[n]*a[n-1], a[n-1] ...
- 转载:hdu 题目分类 (侵删)
转载:from http://blog.csdn.net/qq_28236309/article/details/47818349 基础题:1000.1001.1004.1005.1008.1012. ...
- HDOJ 2111. Saving HDU 贪心 结构体排序
Saving HDU Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- 【HDU 3037】Saving Beans Lucas定理模板
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...
随机推荐
- nginx源代码分析--nginx进程间通信
Linux下的IPC非常多,nginx的进程都是有亲缘关系的进程,对于他们的通信我们选择TCP socket进行通信. TCP socket 用来做进程通信的优点有, 1.socket是文件描 ...
- typeof、instanceof、hasOwnProperty()、isPrototypeOf()
typeof 操作符 instanceof 操作符 hasOwnProperty()方法 isPrototypeOf()方法 1.typeof 用于获取变量的类型,一般只返回以下几个值:string, ...
- [xPlugins] jQuery Contextmenu右键菜单
[2012-04-12] Contextmenu 右键菜单 v0.1 版本发布 [功能] 在特定区域弹出右键菜单 [功能] 可以在弹出右键菜单区域内,再屏蔽某个小区域. [功能] 有两种方式添加右键菜 ...
- MySQL视图、触发器、事务、存储过程、函数
视图.触发器.事务.存储过程.函数 阅读目录 一 视图 二 触发器 三 事务 四 存储过程 五 函数 六 流程控制 一 视图 视图是一个虚拟表(非真实存在),其本质是[根据SQL语句获取动态的数据 ...
- DataTable和List相互转换的类
DataTable与List相互转换 .NET后台数据处理,从数据库中的捞出的数据格式一般是List和DataTable的格式.现在将两种格式相互转换的心得记录下来以便以后查找(直接上代码). pub ...
- C# 线程知识汇总
一.基本概念 进程(process)是windows系统中你的一个基本概念,它包含着一个运行程序所需要的资源.一个正在运行的应用程序在操作系统中被视为一个进程,进程可以包括一个或者多个线程.线程是操作 ...
- lua队列实现
Queue = {} function Queue.newquene() } end function Queue.push(queue, value) queue.count = queue.cou ...
- BZOJ1096: [ZJOI2007]仓库建设(dp+斜率优化)
Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 5790 Solved: 2597[Submit][Status][Discuss] Descript ...
- Module, Package in Python
1.To put it simple, Module是写好的一系列函数或变量,文件以.py为后缀,可以在其他Module中整体或部分引用. PS: 在Module中[结尾或开头]加入if __name ...
- python爬虫:读取PDF
下面的代码可以实现用python读取PDF,包括读取本地和网络上的PDF. pdfminer下载地址:https://pypi.python.org/packages/source/p/pdfmine ...