http://poj.org/problem?id=1474

解法同POJ 1279 A一送一 缺点是还是O(n^2) ...nlogn的过几天补上...

/********************* Template ************************/
#include <set>
#include <map>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <cstdio>
#include <string>
#include <vector>
#include <cassert>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <fstream>
#include <numeric>
#include <iomanip>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std; #define EPS 1e-8
#define MAXN 10005
#define MOD (int)1e9+7
#define PI acos(-1.0)
#define INF ((1LL)<<50)
#define max(a,b) ((a) > (b) ? (a) : (b))
#define min(a,b) ((a) < (b) ? (a) : (b))
#define max3(a,b,c) (max(max(a,b),c))
#define min3(a,b,c) (min(min(a,b),c))
#define BUG cout<<"BUG! "<<endl
#define LLINE cout<<"------------------"<<endl
#define L(t) (t << 1)
#define R(t) (t << 1 | 1)
#define Mid(a,b) ((a + b) >> 1)
#define lowbit(a) (a & -a)
#define FIN freopen("in.txt","r",stdin)
#pragma comment (linker,"/STACK:102400000,102400000") // typedef long long LL;
// typedef unsigned long long ULL;
// typedef __int64 LL;
// typedef unisigned __int64 ULL;
// int gcd(int a,int b){ return b?gcd(b,a%b):a; }
// int lcm(int a,int b){ return a*b/gcd(a,b); } /********************* F ************************/
struct POINT{
double x,y;
POINT(double _x = , double _y = ):x(_x),y(_y){}
}p[MAXN],q[MAXN],t[MAXN];
int n;
struct LINE{
double a,b,c;
POINT A,B;
LINE(POINT _a, POINT _b):A(_a),B(_b){
a=B.y-A.y;
b=A.x-B.x;
c=B.x*A.y-A.x*B.y;
}
};
double multiply(POINT sp,POINT ep,POINT op){ //叉积 左+ 右-
return (sp.x-op.x) * (ep.y-op.y) - (ep.x-op.x) * (sp.y-op.y);
}
POINT Intersection(LINE a,LINE b){ //直线交点
double u = fabs(b.A.x * a.a + b.A.y * a.b + a.c);
double v = fabs(b.B.x * a.a + b.B.y * a.b + a.c);
POINT t;
t.x = (b.A.x * v + b.B.x * u) / (u + v);
t.y = (b.A.y * v + b.B.y * u) / (u + v);
return t;
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("outm.txt","w",stdout);
int ct = ;
while(cin>>n && n){
for(int i = ; i < n ; i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
//暴力对每一个向量作半平面交 ...即将右侧的点和与其他直线的交点加入集合
for(int i = ; i < n ; i++) q[i] = p[i];
int cnt = n;
for(int i = ; i < n ; i++){
int c = ;
for(int j = ; j < cnt ; j++){
//点在右侧
if(multiply(p[i],p[(i+)%n],q[j]) <= EPS) {
t[c++] = q[j];
}else { //点在左侧,但是前后线段和该直线有交点
//这个顺序不要写反,否则不是顺时针会WA
if(multiply(p[i],p[(i+)%n],q[(j-+cnt)%cnt]) < -EPS){
t[c++] = Intersection(LINE(p[i],p[(i+)%n]) , LINE(q[j],q[(j-+cnt)%cnt]));
}
if(multiply(p[i],p[(i+)%n],q[(j+)%cnt]) < -EPS){
t[c++] = Intersection(LINE(p[i],p[(i+)%n]) , LINE(q[j],q[(j+)%cnt]));
}
}
}
for(int j = ; j < c ; j++) {q[j] = t[j];}
cnt = c;
}
cout<<"Floor #"<<ct++<<endl;
if(cnt != ) cout<<"Surveillance is possible.\n"<<endl;
else cout<<"Surveillance is impossible.\n"<<endl;
}
return ;
}

POJ 1474 Video Surveillance 半平面交/多边形核是否存在的更多相关文章

  1. POJ 1474 Video Surveillance(半平面交)

    题目链接 2Y,模版抄错了一点. #include <cstdio> #include <cstring> #include <string> #include & ...

  2. poj 1474 Video Surveillance - 求多边形有没有核

    /* poj 1474 Video Surveillance - 求多边形有没有核 */ #include <stdio.h> #include<math.h> const d ...

  3. poj 1474 Video Surveillance (半平面交)

    链接:http://poj.org/problem?id=1474 Video Surveillance Time Limit: 1000MS   Memory Limit: 10000K Total ...

  4. poj 1474 Video Surveillance 【半平面交】

    半平面交求多边形的核,注意边是顺时针给出的 //卡精致死于是换(?)了一种求半平面交的方法-- #include<iostream> #include<cstdio> #inc ...

  5. ●poj 1474 Video Surveillance

    题链: http://poj.org/problem?id=1474 题解: 计算几何,半平面交 半平面交裸题,快要恶心死我啦... (了无数次之后,一怒之下把onleft改为onright,然后还加 ...

  6. POJ1474 Video Surveillance(半平面交)

    求多边形核的存在性,过了这题但是过不了另一题的,不知道是模板的问题还是什么,但是这个模板还是可以过绝大部分的题的... #pragma warning(disable:4996) #include & ...

  7. POJ 1279 Art Gallery 半平面交求多边形核

    第一道半平面交,只会写N^2. 将每条边化作一个不等式,ax+by+c>0,所以要固定顺序,方便求解. 半平面交其实就是对一系列的不等式组进行求解可行解. 如果某点在直线右侧,说明那个点在区域内 ...

  8. poj1474Video Surveillance(半平面交)

    链接 半平面交的模板题,判断有没有核.: 注意一下最后的核可能为一条线,面积也是为0的,但却是有的. #include<iostream> #include <stdio.h> ...

  9. 2018.07.03 POJ 1279Art Gallery(半平面交)

    Art Gallery Time Limit: 1000MS Memory Limit: 10000K Description The art galleries of the new and ver ...

随机推荐

  1. UVa 11025 The broken pedometer【枚举子集】

    题意:给出一个矩阵,这个矩阵由n个数的二进制表示,p表示用p位二进制来表示的一个数 问最少用多少列就能将这n个数区分开 枚举子集,然后统计每一种子集用了多少列,维护一个最小值 b[i]==1代表的是选 ...

  2. B-Boxes

    http://agc010.contest.atcoder.jp/tasks/agc010_b Problem Statement There are N boxes arranged in a ci ...

  3. 走进ReactiveCocoa的世界

    在学习ReactiveCocoa之前,先学习一下概念 ReactiveCocoa 是一套开源的基于Cocoa的FRP框架 .FRP的全称是Functional Reactive Programming ...

  4. MySQL服务正在启动或停止中,请稍候片刻后再试一次【解决方案】

    相信有些小伙伴在使用数据库的过程中会经常频繁的启动和停止MySQL服务,有时候会出现“服务正在启动或停止中,请稍候片刻后再试一次.”这样的提示,如下图所示. 于是乎想办法去解决这个问题,但是发现连强制 ...

  5. php如何openssl_encrypt加密解密

    最近在对接客户的CRM系统,获取令牌时,要用DES方式加密解密,由于之前没有搞错这种加密方式,经过请教了"百度"和"谷歌"两个老师后,结合了多篇文档内容后,终于 ...

  6. [HNOI2006]超级英雄(二分+网络流)

    [HNOI2006]超级英雄 题目描述 现在电视台有一种节目叫做超级英雄,大概的流程就是每位选手到台上回答主持人的几个问题,然后根据回答问题的多少获得不同数目的奖品或奖金.主持人问题准备了若干道题目, ...

  7. CF245H Queries for Number of Palindromes(回文树)

    题意翻译 题目描述 给你一个字符串s由小写字母组成,有q组询问,每组询问给你两个数,l和r,问在字符串区间l到r的字串中,包含多少回文串. 输入格式 第1行,给出s,s的长度小于5000 第2行给出q ...

  8. [Python] Statistical analysis of time series

    Global Statistics: Common seen methods as such 1. Mean 2. Median 3. Standard deviation:  the larger ...

  9. 【Android进阶】Junit单元測试环境搭建以及简单有用

    单元測试的目的 首先.Junit单元測试要实现的功能,就是用来測试写好的方法是否可以正确的运行,一般多用于对业务方法的測试. 单元測试的环境配置 1.在AndroidManifest清单文件的Appl ...

  10. POJ 3629 队列模拟

    听说STL会卡T 然后我就试了一发 哈哈哈哈哈哈哈哈哈哈 1000ms卡时过的 这很值得我写一发题解了 哈哈哈哈哈哈哈哈哈哈哈哈 //By SiriusRen #include <queue&g ...