cv相关博客文章
收藏些图像处理,机器学习,深度学习方面比较不错的文章,时常学习,复习和膜拜吧。。。
图像方面(传统CV):
1. SIFT特征
https://www.cnblogs.com/wangguchangqing/p/4853263.html
http://shartoo.github.io/SIFT-feature/?FbmNv=5d9f3d0c8ca5090a
https://blog.csdn.net/u010440456/article/details/81483145
2. HOG特征
http://shartoo.github.io/HOG-feature/?FbmNv=5d9f3d48e0647071
https://senitco.github.io/2017/06/10/image-feature-hog/
https://www.cnblogs.com/aoru45/p/9748481.html
https://zhuanlan.zhihu.com/p/40960756
3. 图像金字塔
http://shartoo.github.io/image-pramid/?FbmNv=5d9f3d6e990e41bb
https://zhuanlan.zhihu.com/p/32815143
4. Haar特征
http://shartoo.github.io/img-haar-feature/
https://senitco.github.io/2017/06/15/image-feature-haar/
https://juejin.im/post/5b0e6f83f265da0910791a38
https://blog.csdn.net/zouxy09/article/details/7929570
5.Harris角点
https://www.cnblogs.com/ronny/p/4009425.html
https://senitco.github.io/2017/06/18/image-feature-harris/
https://zhuanlan.zhihu.com/p/42490675
https://zhuanlan.zhihu.com/p/36382429
机器学习方面:
1. Linear Regression
https://zhuanlan.zhihu.com/p/45023349
2. Logistic Regression
https://chenrudan.github.io/blog/2016/01/09/logisticregression.html
https://www.jiqizhixin.com/articles/2018-05-13-3
https://zhuanlan.zhihu.com/p/28408516
3.Neutral Network
https://clyyuanzi.gitbooks.io/julymlnotes/content/dl_nn.html
https://www.cnblogs.com/subconscious/p/5058741.html
神经网络损失函数(loss function):
4. 回归和正则化(Regression and Regularization)
https://www.zhihu.com/question/20924039
https://zhuanlan.zhihu.com/p/29957294
线性回归,逻辑回归和神经网络带正则化的损失函数:
正则化项能减缓梯度的变化:
5. SVM(support vector machine)
拉格朗日乘子法
对偶问题:
KKT条件:
SVM原理:
https://www.jiqizhixin.com/articles/2018-10-17-20
https://www.cnblogs.com/leftnoteasy/archive/2011/05/02/basic-of-svm.html
https://wizardforcel.gitbooks.io/dm-algo-top10/content/svm-1.html
https://blog.csdn.net/v_JULY_v/article/details/7624837
支持向量机的表达式,拉格朗日函数,对偶问题和KKT条件:
软间隔支持向量机的表达式,拉格朗日函数,对偶问题和KKT条件:
支持向量机非线性化的核函数:
SVM使用代码(sklearn包):(线性svm,和采用核函数的非线性SVM)
SVM的python实现: https://blog.csdn.net/laobai1015/article/details/82763033
6. kmeans算法
https://www.csuldw.com/2015/06/03/2015-06-03-ml-algorithm-K-means/
https://www.cnblogs.com/pinard/p/6164214.html
k-Means++
https://zhuanlan.zhihu.com/p/32375430
kmeans和kmeans++ python代码实现:
https://github.com/silence-cho/cv-learning/blob/master/week4/assignment.py
https://github.com/ViperBling/CV_Course/blob/master/Week5/K-Means%2B%2B/K-Means.py
7.KNN(k近邻)算法
https://coolshell.cn/articles/8052.html
https://www.cnblogs.com/ybjourney/p/4702562.html
8.决策树 (Decision tree)
https://www.csuldw.com/2015/05/08/2015-05-08-decision%20tree/
https://lotabout.me/2018/decision-tree/
https://blog.csdn.net/xbinworld/article/details/44660339
信息增益:
信息增益率:
基尼指数:
ID3(信息增益)和C4.5(信息增益率):https://zhuanlan.zhihu.com/p/26760551?utm_source=wechat_session&utm_medium=social&utm_oi=71873182302208
sklearn实现决策树:https://www.v2ex.com/amp/t/544062
9.其他算法
AdaBoost:
https://www.cnblogs.com/pinard/p/6133937.html
https://blog.csdn.net/guyuealian/article/details/70995333
LDA(隐式狄利克雷分布): https://github.com/endymecy/spark-ml-source-analysis/blob/master/%E8%81%9A%E7%B1%BB/LDA/lda.md
朴素贝叶斯:https://www.cnblogs.com/leoo2sk/archive/2010/09/17/naive-bayesian-classifier.html
https://zhuanlan.zhihu.com/p/26262151
深度学习方面
1. overfit/underfit (过拟合和欠拟合)
https://zh.d2l.ai/chapter_deep-learning-basics/underfit-overfit.html
https://zhuanlan.zhihu.com/p/29707029
2. bias and variance (高偏差和高方差)
https://www.jianshu.com/p/a585d5506b1e
https://www.cnblogs.com/hutao722/p/9921788.html
http://nanshu.wang/post/2015-05-17/
http://www.voidcn.com/article/p-tqoebcaa-dq.html
3.卷积
反卷积(Deconv / Transposed Convolution / Fractionally strided conv):
https://www.zhihu.com/question/48279880?sort=created
https://www.zhihu.com/question/48279880/answer/838063090
4. Gradient vanishing and explosion (梯度消失和梯度爆炸)
https://blog.csdn.net/qq_25737169/article/details/78847691
https://codertw.com/%E7%A8%8B%E5%BC%8F%E8%AA%9E%E8%A8%80/583004/
https://zhuanlan.zhihu.com/p/51490163
5.Backward(反向传播)
https://juejin.im/entry/5ac056dc6fb9a028de44d620
https://tigerneil.gitbooks.io/neural-networks-and-deep-learning-zh/content/chapter2.html
https://github.com/INTERMT/BP-Algorithm
https://jdhao.github.io/2016/01/19/back-propagation-in-mlp-explained/
图像分割模型:
1. FCN
https://zhuanlan.zhihu.com/p/62839949
https://zh.gluon.ai/chapter_computer-vision/fcn.html
2.U-Net (E-Net)
https://blog.csdn.net/u012931582/article/details/70215756
https://juejin.im/post/5d63eb7bf265da03e05b2065
https://zhuanlan.zhihu.com/p/31428783
https://zhuanlan.zhihu.com/p/57530767
3. E-Net
https://zhuanlan.zhihu.com/p/39430439
http://hellodfan.com/2018/01/02/%E8%AF%AD%E4%B9%89%E5%88%86%E5%89%B2%E8%AE%BA%E6%96%87-ENet/
https://zhuanlan.zhihu.com/p/31379024
4. Mask-RCNN
https://zhuanlan.zhihu.com/p/37998710
https://zhuanlan.zhihu.com/p/40538057
Image Style Transfer(图像风格转变):
Perceptual Loss: Perceptual Losses for Real-Time Style Transferand Super-Resolution
Feature mimicking: Mimicking Very Efficient Network for Object Detection
Model distillation: Distilling the Knowledge in a Neural Network
Image Enhancement (图像增强):
Learning a Deep Single Image Contrast Enhancerfrom Multi-Exposure Images
A Generic Deep Architecture for Single Image Reflection Removaland Image Smoothing (反射移除)
深度学习框架
caffe教程:
https://blog.csdn.net/m0_38116269/article/details/88119001
https://zhuanlan.zhihu.com/p/24110318
cv相关博客文章的更多相关文章
- 年度十佳 DevOps 博客文章(后篇)
如果说 15 年你还没有将 DevOps 真正应用起来,16 年再不实践也未免太落伍了.在上篇文章中我们了解到 15 年十佳 DevOps 博客文章的第 6-10 名,有没有哪一篇抓住了您的眼球,让您 ...
- 年度十佳 DevOps 博客文章(前篇)
如果说 15 年你还没有将 DevOps 真正应用起来,16 年再不实践也未免太落伍了.国内 ITOM 领军企业 OneAPM 工程师为您翻译整理了,2015 年十佳 DevOps 文章,究竟是不是深 ...
- VM 映像 PowerShell 教学系列博客文章
编辑人员注释:本文章是与Microsoft Azure工程的项目经理Kay Singh共同撰写的 正如我在第一篇博客文章中所承诺的,我又回来了,为大家分步介绍如何在PowerShell中使用VM ...
- HelloDjango 第 08 篇:开发博客文章详情页
作者:HelloGitHub-追梦人物 文中涉及的示例代码,已同步更新到 HelloGitHub-Team 仓库 首页展示的是所有文章的列表,当用户看到感兴趣的文章时,他点击文章的标题或者继续阅读的按 ...
- python:简单爬取自己的一篇博客文章
1.爬取文章地址:https://www.cnblogs.com/Mr-choa/p/12495157.html 爬取文章的标题.具体内容,保存到文章名.txt 代码如下: # 导入requests模 ...
- python爬虫实战之爬取智联职位信息和博客文章信息
1.python爬取招聘信息 简单爬取智联招聘职位信息 # !/usr/bin/env python # -*-coding:utf-8-*- """ @Author ...
- SQL Sever 博客文章目录(2016-07-06更新)
SQL Server方面的博客文章也陆陆续续的写了不少了,顺便也将这些知识点整理.归纳一下下.方便自己和他人查看. MS SQL 数据类型 三大数据库对比研究系列--数据类型 MS SQL 表和视图 ...
- 使用 Microsoft Word 发布博客文章
以 Microsoft Word 2010 为例: 依次选择:文件 -> 保存并发送 -> 发布为博客文章 配置说明:新建账户 的 博客文章 URL 一栏填写 http://rpc.cn ...
- Word 2010发布博客文章
只测试了cnblog 1.新建文件选择word 2010自带的博客文章模板 2.在管理账户中新建一个博客账户,也就是你自己在博客园的账户,博客选其他 3.然后选择下一步,博客的URL在自己的博客设置里 ...
随机推荐
- 使用ISO文件制作openstack使用的coreOS镜像
OpenStack源码交流群: 538850354 本篇文章是使用coreOS ISO文件手动制作openstack使用的qcow2镜像文件,关于coreOS的介绍,可以看这里 使用服务器:cento ...
- 动态规划——python
1.爬楼梯问题一个人爬楼梯,每次只能爬1个或两个台阶,假设有n个台阶,那么这个人有多少种不同的爬楼梯方法 动态规划的状态转移:第 i 个状态的方案数和第 i-1, i-2时候的状态有关,即:dp[i] ...
- SecureCRT中解决乱码的问题
SecureCRT中文乱码的问题,解决方法如下: 打开Option菜单,点击Session Options- 在Appearance外观这里,选择编码--UTF-8 一定要记得先保存! ...
- python练习题(二)
题目: 已知以下几期双色球号码(最后一个数字为蓝球), 2019080 03 06 08 20 24 32 07 2019079 01 03 06 09 19 31 16 2019078 01 17 ...
- HTTP请求响应过程以及与HTTPS区别
HTTP协议 HTTP协议主要应用是在服务器和客户端之间,客户端接受超文本. 服务器按照一定规则,发送到客户端(一般是浏览器)的传送通信协议.与之类似的还有文件传送协议(file transfer p ...
- 包,logging日志模块,copy深浅拷贝
一 包 package 包就是一个包含了 __init__.py文件的文件夹 包是模块的一种表现形式,包即模块 首次导入包: 先创建一个执行文件的名称空间 1.创建包下面的__init__.py文件的 ...
- javaWeb上传
上传(上传不能使用BaseServlet) 1. 上传对表单限制 * method="post" * enctype="multipart/form-data&quo ...
- document基本操作 动态脚本-动态样式-创建表格
var html = document.documentElement; var body = document.body; window.onload = function() { //docume ...
- SIGAI机器学习第三集 数学知识-2
讲授机器学习相关的高等数学.线性代数.概率论知识 大纲: 最优化中的基本概念梯度下降法牛顿法坐标下降法数值优化算法面临的问题拉格朗日乘数法凸优化问题凸集凸函数凸优化拉格朗日对偶KKT条件 最优化中的基 ...
- loj 2011
对于第 $i$ 天的询问前 $i - c - 1$ 天都会影响答案主席树维护 #include <iostream> #include <cstdio> #include &l ...