收藏些图像处理,机器学习,深度学习方面比较不错的文章,时常学习,复习和膜拜吧。。。

图像方面(传统CV):

1. SIFT特征

https://www.cnblogs.com/wangguchangqing/p/4853263.html

http://shartoo.github.io/SIFT-feature/?FbmNv=5d9f3d0c8ca5090a

https://blog.csdn.net/u010440456/article/details/81483145

2. HOG特征

http://shartoo.github.io/HOG-feature/?FbmNv=5d9f3d48e0647071

https://senitco.github.io/2017/06/10/image-feature-hog/

https://www.cnblogs.com/aoru45/p/9748481.html

https://zhuanlan.zhihu.com/p/40960756

3. 图像金字塔

http://shartoo.github.io/image-pramid/?FbmNv=5d9f3d6e990e41bb

https://zhuanlan.zhihu.com/p/80362140?utm_source=wechat_session&utm_medium=social&utm_oi=71873182302208

https://zhuanlan.zhihu.com/p/32815143

https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_pyramids/py_pyramids.html

4. Haar特征

http://shartoo.github.io/img-haar-feature/

https://senitco.github.io/2017/06/15/image-feature-haar/

https://juejin.im/post/5b0e6f83f265da0910791a38

https://blog.csdn.net/zouxy09/article/details/7929570

5.Harris角点

https://www.cnblogs.com/ronny/p/4009425.html

https://senitco.github.io/2017/06/18/image-feature-harris/

https://zhuanlan.zhihu.com/p/42490675

https://zhuanlan.zhihu.com/p/36382429

机器学习方面:

1. Linear Regression

https://yoyoyohamapi.gitbooks.io/mit-ml/content/%E7%BA%BF%E6%80%A7%E5%9B%9E%E5%BD%92/articles/%E7%BA%BF%E6%80%A7%E5%9B%9E%E5%BD%92%E4%B8%8E%E6%A2%AF%E5%BA%A6%E4%B8%8B%E9%99%8D.html

https://zhuanlan.zhihu.com/p/45023349

2. Logistic Regression

https://chenrudan.github.io/blog/2016/01/09/logisticregression.html

https://www.jiqizhixin.com/articles/2018-05-13-3

https://zhuanlan.zhihu.com/p/28408516

3.Neutral Network

https://clyyuanzi.gitbooks.io/julymlnotes/content/dl_nn.html

https://www.cnblogs.com/subconscious/p/5058741.html

神经网络损失函数(loss function):

4. 回归和正则化(Regression and Regularization)

https://www.zhihu.com/question/20924039

http://studyai.site/2016/09/04/%E6%96%AF%E5%9D%A6%E7%A6%8F%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E8%AF%BE%E7%A8%8B%20%E7%AC%AC%E4%B8%89%E5%91%A8%20(4)%E6%AD%A3%E5%88%99%E5%8C%96%EF%BC%9A%E8%A7%A3%E5%86%B3%E8%BF%87%E6%8B%9F%E5%90%88%E9%97%AE%E9%A2%98/

https://zhuanlan.zhihu.com/p/29957294

线性回归,逻辑回归和神经网络带正则化的损失函数:

正则化项能减缓梯度的变化:

 5. SVM(support vector machine)

拉格朗日乘子法

https://www.zhihu.com/question/38586401/answer/457058079?utm_source=wechat_session&utm_medium=social&utm_oi=71873182302208&hb_wx_block=0

对偶问题:

https://zhuanlan.zhihu.com/p/31131842?utm_source=wechat_session&utm_medium=social&utm_oi=71873182302208

KKT条件:

https://zhuanlan.zhihu.com/p/26514613?utm_source=wechat_session&utm_medium=social&utm_oi=71873182302208

SVM原理:

https://webcache.googleusercontent.com/search?q=cache:0bibeWe0EQYJ:https://raw.githubusercontent.com/liuzheng712/Intro2SVM/master/Intro2SVM.pdf+&cd=13&hl=zh-CN&ct=clnk&gl=us

https://zhuanlan.zhihu.com/p/24638007?utm_source=wechat_session&utm_medium=social&utm_oi=71873182302208

https://www.jiqizhixin.com/articles/2018-10-17-20

https://www.cnblogs.com/leftnoteasy/archive/2011/05/02/basic-of-svm.html

https://wizardforcel.gitbooks.io/dm-algo-top10/content/svm-1.html

https://blog.csdn.net/v_JULY_v/article/details/7624837

支持向量机的表达式,拉格朗日函数,对偶问题和KKT条件:

软间隔支持向量机的表达式,拉格朗日函数,对偶问题和KKT条件:

支持向量机非线性化的核函数:

SVM使用代码(sklearn包):(线性svm,和采用核函数的非线性SVM)

https://zhuanlan.zhihu.com/p/37640777?utm_source=wechat_session&utm_medium=social&utm_oi=71873182302208

SVM的python实现https://blog.csdn.net/laobai1015/article/details/82763033

6. kmeans算法

https://yoyoyohamapi.gitbooks.io/mit-ml/content/KMeans/articles/K-Means%E7%AE%97%E6%B3%95%E6%AD%A5%E9%AA%A4.html

https://www.csuldw.com/2015/06/03/2015-06-03-ml-algorithm-K-means/

https://bainingchao.github.io/2018/09/19/%E4%B8%80%E6%AD%A5%E6%AD%A5%E6%95%99%E4%BD%A0%E8%BD%BB%E6%9D%BE%E5%AD%A6K-means%E8%81%9A%E7%B1%BB%E7%AE%97%E6%B3%95/

https://www.cnblogs.com/pinard/p/6164214.html

 k-Means++

https://zhuanlan.zhihu.com/p/32375430

kmeans和kmeans++ python代码实现:

https://github.com/silence-cho/cv-learning/blob/master/week4/assignment.py

https://github.com/ViperBling/CV_Course/blob/master/Week5/K-Means%2B%2B/K-Means.py

7.KNN(k近邻)算法

https://coolshell.cn/articles/8052.html

https://www.cnblogs.com/ybjourney/p/4702562.html

8.决策树 (Decision tree)

https://bainingchao.github.io/2018/09/19/%E4%B8%80%E6%AD%A5%E6%AD%A5%E6%95%99%E4%BD%A0%E8%BD%BB%E6%9D%BE%E5%AD%A6%E5%86%B3%E7%AD%96%E6%A0%91%E7%AE%97%E6%B3%95/

https://www.csuldw.com/2015/05/08/2015-05-08-decision%20tree/

https://lotabout.me/2018/decision-tree/

https://blog.csdn.net/xbinworld/article/details/44660339

信息增益:

信息增益率:

基尼指数:

ID3(信息增益)和C4.5(信息增益率):https://zhuanlan.zhihu.com/p/26760551?utm_source=wechat_session&utm_medium=social&utm_oi=71873182302208

基尼不纯度(基尼指数):https://www.zhihu.com/question/296781126/answer/508112100?utm_source=wechat_session&utm_medium=social&utm_oi=71873182302208&hb_wx_block=0

sklearn实现决策树:https://www.v2ex.com/amp/t/544062

9.其他算法

AdaBoost:

  https://www.cnblogs.com/pinard/p/6133937.html

  https://blog.csdn.net/guyuealian/article/details/70995333

LDA(隐式狄利克雷分布):  https://github.com/endymecy/spark-ml-source-analysis/blob/master/%E8%81%9A%E7%B1%BB/LDA/lda.md

朴素贝叶斯:https://www.cnblogs.com/leoo2sk/archive/2010/09/17/naive-bayesian-classifier.html

https://zhuanlan.zhihu.com/p/26262151

       python实现:https://zhuanlan.zhihu.com/p/32183117?utm_source=wechat_session&utm_medium=social&utm_oi=71873182302208

深度学习方面

1. overfit/underfit (过拟合和欠拟合)

https://marian5211.github.io/2018/03/08/%E3%80%90%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E3%80%91%E8%BF%87%E6%8B%9F%E5%90%88%E3%80%81%E6%AC%A0%E6%8B%9F%E5%90%88%E5%8F%8A%E5%85%B6%E8%A7%A3%E5%86%B3%E5%8A%9E%E6%B3%95/

https://zh.d2l.ai/chapter_deep-learning-basics/underfit-overfit.html

https://zhuanlan.zhihu.com/p/29707029

 2. bias and variance (高偏差和高方差)

https://www.jianshu.com/p/a585d5506b1e

https://www.cnblogs.com/hutao722/p/9921788.html

http://nanshu.wang/post/2015-05-17/

http://www.voidcn.com/article/p-tqoebcaa-dq.html

3.卷积

反卷积(Deconv / Transposed Convolution / Fractionally strided conv):

https://www.zhihu.com/question/48279880?sort=created

https://www.zhihu.com/question/48279880/answer/838063090

4. Gradient vanishing and explosion (梯度消失和梯度爆炸)

https://blog.csdn.net/qq_25737169/article/details/78847691

https://jimmy-walker.gitbooks.io/tensorflow/%E6%A2%AF%E5%BA%A6%E6%B6%88%E5%A4%B1%E5%92%8C%E6%A2%AF%E5%BA%A6%E7%88%86%E7%82%B8.html

https://hunto.github.io/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0/2018/07/17/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E4%B8%AD%E6%A2%AF%E5%BA%A6%E6%B6%88%E5%A4%B1%E4%B8%8E%E6%A2%AF%E5%BA%A6%E7%88%86%E7%82%B8%E9%97%AE%E9%A2%98%E8%AF%A6%E8%A7%A3.html

https://codertw.com/%E7%A8%8B%E5%BC%8F%E8%AA%9E%E8%A8%80/583004/

https://zhuanlan.zhihu.com/p/51490163

5.Backward(反向传播)

https://juejin.im/entry/5ac056dc6fb9a028de44d620

https://tigerneil.gitbooks.io/neural-networks-and-deep-learning-zh/content/chapter2.html

https://github.com/INTERMT/BP-Algorithm

https://jdhao.github.io/2016/01/19/back-propagation-in-mlp-explained/

图像分割模型:

1. FCN

https://zhuanlan.zhihu.com/p/62839949

http://iblue.tech/2019/05/11/%E8%AE%BA%E6%96%87%E7%AC%94%E8%AE%B0-FCN-%E7%94%A8%E4%BA%8E%E5%9B%BE%E5%83%8F%E5%88%86%E5%89%B2%E7%9A%84%E5%85%A8%E5%8D%B7%E7%A7%AF%E7%BD%91%E7%BB%9C/

https://zh.gluon.ai/chapter_computer-vision/fcn.html

 2.U-Net (E-Net)

https://blog.csdn.net/u012931582/article/details/70215756

https://juejin.im/post/5d63eb7bf265da03e05b2065

https://zhuanlan.zhihu.com/p/31428783

http://tanqingbo.com/2018/10/08/%E8%AE%BA%E6%96%87%E7%AC%94%E8%AE%B0%EF%BC%9A%E7%94%A8%E4%BA%8E%E5%8C%BB%E5%AD%A6%E5%9B%BE%E5%83%8F%E5%88%86%E5%89%B2%E7%9A%84%E5%8D%B7%E7%A7%AF%E7%BD%91%E7%BB%9C/

https://zhuanlan.zhihu.com/p/57530767

3. E-Net

https://zhuanlan.zhihu.com/p/39430439

http://hellodfan.com/2018/01/02/%E8%AF%AD%E4%B9%89%E5%88%86%E5%89%B2%E8%AE%BA%E6%96%87-ENet/

https://zhuanlan.zhihu.com/p/31379024

4. Mask-RCNN

https://zhuanlan.zhihu.com/p/37998710

https://www.analyticsvidhya.com/blog/2019/07/computer-vision-implementing-mask-r-cnn-image-segmentation/

https://zhuanlan.zhihu.com/p/40538057

Image Style Transfer(图像风格转变):

Perceptual Loss: Perceptual Losses for Real-Time Style Transferand Super-Resolution

Feature mimicking:  Mimicking Very Efficient Network for Object Detection

Model distillation: Distilling the Knowledge in a Neural Network

Image Enhancement (图像增强):

Learning a Deep Single Image Contrast Enhancerfrom Multi-Exposure Images

A Generic Deep Architecture for Single Image Reflection Removaland Image Smoothing  (反射移除)

深度学习框架

caffe教程:

https://blog.csdn.net/m0_38116269/article/details/88119001

https://zhuanlan.zhihu.com/p/24110318

https://absentm.github.io/2016/05/14/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0Caffe%E7%B3%BB%E5%88%97%E6%95%99%E7%A8%8B%E9%9B%86%E5%90%88/

cv相关博客文章的更多相关文章

  1. 年度十佳 DevOps 博客文章(后篇)

    如果说 15 年你还没有将 DevOps 真正应用起来,16 年再不实践也未免太落伍了.在上篇文章中我们了解到 15 年十佳 DevOps 博客文章的第 6-10 名,有没有哪一篇抓住了您的眼球,让您 ...

  2. 年度十佳 DevOps 博客文章(前篇)

    如果说 15 年你还没有将 DevOps 真正应用起来,16 年再不实践也未免太落伍了.国内 ITOM 领军企业 OneAPM 工程师为您翻译整理了,2015 年十佳 DevOps 文章,究竟是不是深 ...

  3. VM 映像 PowerShell 教学系列博客文章

     编辑人员注释:本文章是与Microsoft Azure工程的项目经理Kay Singh共同撰写的 正如我在第一篇博客文章中所承诺的,我又回来了,为大家分步介绍如何在PowerShell中使用VM ...

  4. HelloDjango 第 08 篇:开发博客文章详情页

    作者:HelloGitHub-追梦人物 文中涉及的示例代码,已同步更新到 HelloGitHub-Team 仓库 首页展示的是所有文章的列表,当用户看到感兴趣的文章时,他点击文章的标题或者继续阅读的按 ...

  5. python:简单爬取自己的一篇博客文章

    1.爬取文章地址:https://www.cnblogs.com/Mr-choa/p/12495157.html 爬取文章的标题.具体内容,保存到文章名.txt 代码如下: # 导入requests模 ...

  6. python爬虫实战之爬取智联职位信息和博客文章信息

    1.python爬取招聘信息 简单爬取智联招聘职位信息 # !/usr/bin/env python # -*-coding:utf-8-*- """ @Author  ...

  7. SQL Sever 博客文章目录(2016-07-06更新)

    SQL Server方面的博客文章也陆陆续续的写了不少了,顺便也将这些知识点整理.归纳一下下.方便自己和他人查看. MS SQL 数据类型 三大数据库对比研究系列--数据类型 MS SQL 表和视图 ...

  8. 使用 Microsoft Word 发布博客文章

    以 Microsoft Word 2010 为例: 依次选择:文件 -> 保存并发送 -> 发布为博客文章 配置说明:新建账户 的 博客文章 URL  一栏填写 http://rpc.cn ...

  9. Word 2010发布博客文章

    只测试了cnblog 1.新建文件选择word 2010自带的博客文章模板 2.在管理账户中新建一个博客账户,也就是你自己在博客园的账户,博客选其他 3.然后选择下一步,博客的URL在自己的博客设置里 ...

随机推荐

  1. centos 安装 kibana

    因为我本机安装的 elasticsearch 是 6.2.4 版本,所以kibana也要安装对应的 6.2.4 版本 wget https://artifacts.elastic.co/downloa ...

  2. 美化WebApi,使其统一返回Json格式

    博客部分代码来自其他博主,暂时找不到你的博文连接,如果您觉得我的代码中引入了您的代码或者文章,可在下方把您的博客文章写在下面,谢谢!!! WebApi有两种返回数据格式,一种是XML,一种是Json, ...

  3. 使用Dell iDRAC服务器远程控制安装操作系统简要图解

    使用Dell iDRAC服务器远程控制安装操作系统简要图解 iDARC tools   iDRAC又称为Integrated Dell Remote Access Controller,也就是集成戴尔 ...

  4. pringBoot2.0启用https协议

    SpringBoot2.0之后,启用https协议的方式与1.*时有点儿不同,贴一下代码. 我的代码能够根据配置参数中的condition.http2https,确定是否启用https协议,如果启用h ...

  5. Oracle中split功能的实现

    原始需求: 有这样的表:tb和pk两列 PK是将表的多个主键用“|”进行分隔,我想把它变成多行 如 fundamentals_asia1_af_out ID_BB_GLOBAL|BC_DT|BC_EQ ...

  6. PL/SQL存储过程

    一.概述 过程和函数统称为PL/SQL子程序,他们是被命名的PL/SQL块,均存储于数据库中. 并通过输入.输出和输入输出参数与其调用者交换信息.唯一区别是函数总向调用者返回数据. 二.存储过程详解 ...

  7. GIL 信号量 event事件 线程queue

    GIL全局解释器锁 官方解释: In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple n ...

  8. 46、[源码]-Spring容器创建-注册BeanPostProcessors

    46.[源码]-Spring容器创建-注册BeanPostProcessors 6.registerBeanPostProcessors(beanFactory);注册BeanPostProcesso ...

  9. 005_硬件基础电路_PCB安规设计规范

    包含两个文件:讲解pcb绘制过程中的安规要求 002_2_PCB安规设计规范(原创-绝对经典全面-玩转高压PCB设计)总结 002_3_电气间隙和爬电距离规定 链接:https://pan.baidu ...

  10. Spring的注解@Qualifier用法

    Spring的注解@Qualifier用法在Controller中需要注入service那么我的这个server有两个实现类如何区分开这两个impl呢?根据注入资源的注解不同实现的方式有一点小小的区别 ...