luogu4366 [Code+#4]最短路[优化建边最短路]
显然这里的$n^2$级别的边数不能全建出来,于是盯住xor这个关键点去 瞎猜 探究有没有什么特殊性质可以使得一些边没有必要建出来。
发现一个点经过一次xor $x$,花费$x$这么多代价(先不看$C$),到达另一个点$u\text{xor}x$。
结合异或性质,发现其实这个过程完全可以通过把$x$拆成一位一位去分别xor上$u$,也就是说,任何一个点到达另一个点只需要不断走$2^i$这种xor值就可以到达,于是每个点连出$logn$条边,分别和其序号二进制位每一位异或一个1的数相连。这样,如果要走一条xor路径,就可以拆成走若干条上述简化路径。于是建边就可以得到简化,总边数$m+n\text{log}n$,然后跑最短路即可。。
注意一个RE了无数发的detail:食用上述建边方法需要注意有部分超出$n$但小于$2^{log(n)+1}$的点建的边以及$0$号点连的边也是要考虑进去的,具体为什么自己想。。。于是乎这个数组大小不能照1e5来开了,开两倍2e5。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#define dbg(x) cerr << #x << " = " << x <<endl
using namespace std;
typedef long long ll;
typedef double db;
typedef pair<ll,int> pii;
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline char MIN(T&A,T B){return A>B?(A=B,):;}
template<typename T>inline char MAX(T&A,T B){return A<B?(A=B,):;}
template<typename T>inline void _swap(T&A,T&B){A^=B^=A^=B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
const int N=1e5+,M=+;
struct thxorz{int to,nxt,w;}G[M];
int Head[N<<],tot;
int n,m,c,len,s,t;
inline void Addedge(int x,int y,int z){G[++tot].to=y,G[tot].nxt=Head[x],Head[x]=tot,G[tot].w=z;}
ll dis[N<<];
priority_queue<pii,vector<pii>,greater<pii> >q;
#define y G[j].to
inline void dij(){
memset(dis,0x3f,sizeof dis);q.push(make_pair(dis[s]=,s));
while(!q.empty()){
ll d=q.top().first;int x=q.top().second;q.pop();
if(t==x)break;
if(d^dis[x])continue;
for(register int j=Head[x];j;j=G[j].nxt)if(MIN(dis[y],d+G[j].w))q.push(make_pair(dis[y],y));
}
}
#undef y
int main(){//freopen("test.in","r",stdin);//freopen("test.ans","w",stdout);
read(n),read(m),read(c);
for(register int i=,x,y,z;i<=m;++i)read(x),read(y),read(z),Addedge(x,y,z);
len=__lg(n);read(s),read(t);
for(register int i=;i<=(<<len+)-;++i)for(register int j=len;~j;--j)Addedge(i,i^(<<j),(<<j)*c);
dij();
return printf("%lld\n",dis[t]),;
}
总结:对于边过多的图尝试发掘性质简化建边,去除没有必要的边,用如前缀/异或/线段树等方法来降低边数或者用少量边替代全部情况。
luogu4366 [Code+#4]最短路[优化建边最短路]的更多相关文章
- G. 神圣的 F2 连接着我们 线段树优化建图+最短路
这个题目和之前写的一个线段树优化建图是一样的. B - Legacy CodeForces - 787D 线段树优化建图+dij最短路 基本套路 之前这个题目可以相当于一个模板,直接套用就可以了. 不 ...
- 【SDOI2017】天才黑客(前后缀优化建图 & 最短路)
Description 给定一张有向图,\(n\) 个点,\(m\) 条边.第 \(i\) 条边上有一个边权 \(c_i\),以及一个字符串 \(s_i\). 其中字符串 \(s_1, s_2, \c ...
- CodeForces 786B Legacy(线段树优化建图+最短路)
[题目链接] http://codeforces.com/problemset/problem/786/B [题目大意] 给出一些星球,现在有一些传送枪,可以从一个星球到另一个星球, 从一个星球到另一 ...
- LOJ#6354. 「CodePlus 2018 4 月赛」最短路[最短路优化建图]
题意 一个 \(n\) 个点的完全图,两点之间的边权为 \((i\ xor\ j)*C\) ,同时有 \(m\) 条额外单向路径,问从 \(S\) 到 \(T\) 的最短路. \(n\leq 10^5 ...
- Codeforces.786B.Legacy(线段树优化建图 最短路Dijkstra)
题目链接 \(Description\) 有\(n\)个点.你有\(Q\)种项目可以选择(边都是有向边,每次给定\(t,u,v/lr,w\)): t==1,建一条\(u\to v\)的边,花费\(w\ ...
- 牛客网NOIP赛前集训营-提高组(第八场)-B-推箱子[最短路优化建图]
题意 有 \(n\) 个箱子,指定一个箱子开始向右推,如果碰到了别的箱子会令其移动,问 \(k\) 秒之后每个箱子所在的位置. \(n\leq 10^5\). 分析 转化成最短路模型,如果两个箱子 \ ...
- [Codeforces 1197E]Culture Code(线段树优化建图+DAG上最短路)
[Codeforces 1197E]Culture Code(线段树优化建图+DAG上最短路) 题面 有n个空心物品,每个物品有外部体积\(out_i\)和内部体积\(in_i\),如果\(in_i& ...
- 【LibreOJ】#6354. 「CodePlus 2018 4 月赛」最短路 异或优化建图+Dijkstra
[题目]#6354. 「CodePlus 2018 4 月赛」最短路 [题意]给定n个点,m条带权有向边,任意两个点i和j还可以花费(i xor j)*C到达(C是给定的常数),求A到B的最短距离.\ ...
- 【bzoj4699】树上的最短路(树剖+线段树优化建图)
题意 给你一棵 $n$ 个点 $n-1$ 条边的树,每条边有一个通过时间.此外有 $m$ 个传送条件 $(x_1,y_1,x_2,y_2,c)$,表示从 $x_1$ 到 $x_2$ 的简单路径上的点可 ...
随机推荐
- 并发-synchronized
线程并发-synchronized和Lock简单认知 前几天刚加深了线程的了解,期间在验证各种方法及多线程时遇到一些疑问,在高并发的情况下,怎么做才能保证程序还能按照我们预期的正常运行下去,这就是我们 ...
- 实例一 airflow_failover
源码: https://github.com/teamclairvoyant/airflow-scheduler-failover-controller #怎么判断scheduler是running的 ...
- Redis(1.13)Redis cluster 分布式集群手动配置
[1]试验环境 结构图如下: (这里试验没有那么多机器,就用3台机器搭建试验) redis1是redis集群的一个节点A,上面运行了两个redis实例,7001 7004 redis2是redis集群 ...
- sysbench压力测试工具简介
一.sysbench压力测试工具简介: sysbench是一个开源的.模块化的.跨平台的多线程性能测试工具,可以用来进行CPU.内存.磁盘I/O.线程.数据库的性能测试.目前支持的数据库有MySQL. ...
- 20190507-学习dubbo有感于梁飞
“作为一名程序员,BAT肯定是大多数人都想进的,仿佛是一种情愫,就像学生时代的我们对清华北大的向往感觉一样.Dubbo团队中,其中主要负责人就是梁飞了,梁飞的经历还是蛮励志的.梁飞,花名虚极, 200 ...
- HDU 4123 Bob’s Race 树的直径+ST表
Bob’s Race Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=41 ...
- 骨牌摆放方案数n*m(状压DP)
题意:https://www.nitacm.com/problem_show.php?pid=1378 如题. 思路: 从第一行for到最后一行,枚举每一行的所有状态,进行转移,注意答案是dp[最后一 ...
- php 简单的 单例模式
php单例模式简单说明 使用注意事项: 1.使用时不能用反射模式创建单例,否则会实例化一个新的对象 2.使用懒单例模式时注意线程安全问题 3.饿单例模式和懒单例模式构造方法都是 ...
- php通过session来实现登录验证
1.概述 这几天在做一个内部统计管理系统,所有内容需要登录后才能查看.这就需要系统内部每个模块都有登录验证的功能.在网上找了一圈资料,决定用session来做. 2.系统概况 后端语言:php(用的是 ...
- 首篇-记录自己学习python之路!
对于自己学习python的目的比较明确——爬虫和量化. 目前找了一些资源进行学习,先进行量化方面的学习,爬虫滞后.目前的目标是“180天掌握尽可能多的量化能力”! 以后定时发送自己学习思考内容以作自己 ...