其实特别好理解,我们只要写一个数据结构(线段树)支持一下操作:

1.插入一个数\(x\)。

2.查询当前数据结构中最小的数的插入编号。

3.删除插入编号为\(x\)的数。




第一眼看成可持久化了

其实就是一个单点修改,区间(全局)查询的线段树。

zkw线段树在普通线段树的基础上进行了优化(卡常神器)。

我们记录每一个点在线段树中叶子节点的编号。这样修改的时候就不用递归下去找了,直接一个while循环pushup上来就完事。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 1e5 + 5;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
} int n, m, s;
struct Edge
{
int nxt, to, w;
}e[maxn << 1];
int head[maxn], ecnt = -1;
In void addEdge(int x, int y, int w)
{
e[++ecnt] = (Edge){head[x], y, w};
head[x] = ecnt;
} int Min[maxn << 2], id[maxn << 2], pos[maxn << 2];
In void pushup(int now)
{
if(Min[now << 1] <= Min[now << 1 | 1]) Min[now] = Min[now << 1], id[now] = id[now << 1];
else Min[now] = Min[now << 1 | 1], id[now] = id[now << 1 | 1];
}
In void build(int L, int R, int now)
{
if(L == R)
{
Min[now] = INF; id[now] = L;
pos[L] = now;
return;
}
int mid = (L + R) >> 1;
build(L, mid, now << 1), build(mid + 1, R, now << 1 | 1);
pushup(now);
}
In void update(int now, int d)
{
Min[now] = d;
while(now >> 1) pushup(now >> 1), now >>= 1;
} bool in[maxn];
int dis[maxn];
In void dijkstra(int s)
{
Mem(dis, 0x3f), dis[s] = 0;
update(pos[s], dis[s]);
while(Min[1] ^ INF)
{
int now = id[1]; update(pos[now], INF);
if(in[now]) continue;
in[now] = 1;
for(int i = head[now], v; ~i; i = e[i].nxt)
{
if(dis[v = e[i].to] > dis[now] + e[i].w)
{
dis[v] = dis[now] + e[i].w;
update(pos[v], dis[v]);
}
}
}
} int main()
{
Mem(head, -1);
n = read(), m = read(), s = read();
build(1, n, 1);
for(int i = 1; i <= m; ++i)
{
int x = read(), y = read(), w = read();
addEdge(x, y, w);
}
dijkstra(1);
for(int i = 1; i <= n; ++i) write(dis[i]), space; enter;
return 0;
}

dijkstra之zkw线段树优化的更多相关文章

  1. 堆优化/zkw线段树优化 dijkstra

    #include <bits/stdc++.h> using namespace std; const int MAXN = 100005; const int MAXM = 200005 ...

  2. 洛谷P2505||bzoj2750 [HAOI2012]道路 && zkw线段树

    https://www.luogu.org/problemnew/show/P2505 https://www.lydsy.com/JudgeOnline/problem.php?id=2750 神奇 ...

  3. 【Luogu P3371&P4779】【模板】单源最短路径(线段树优化Dijkstra)

    线段树优化$\rm dijkstra$ 线段树每个节点维护$[l,r]$中$dist$最小的点,删除则把该点$dist$赋值为$+\infty$,然后更新该点影响到的线段树上的其他节点即可. 可以得到 ...

  4. 【bzoj3073】[Pa2011]Journeys 线段树优化建图+堆优化Dijkstra

    题目描述 Seter建造了一个很大的星球,他准备建造N个国家和无数双向道路.N个国家很快建造好了,用1..N编号,但是他发现道路实在太多了,他要一条条建简直是不可能的!于是他以如下方式建造道路:(a, ...

  5. 线段树(单标记+离散化+扫描线+双标记)+zkw线段树+权值线段树+主席树及一些例题

    “队列进出图上的方向 线段树区间修改求出总量 可持久留下的迹象 我们 俯身欣赏” ----<膜你抄>     线段树很早就会写了,但一直没有总结,所以偶尔重写又会懵逼,所以还是要总结一下. ...

  6. 线段树和zkw线段树

    作者作为一个蒟蒻,也是最近才自学了线段树,不对的地方欢迎大佬们评论,但是不要喷谢谢 好啦,我们就开始说说线段树吧 线段树是个支持区间操作和查询的东东,平时的话还是蛮实用的 下面以最基本的区间加以及查询 ...

  7. 【bzoj4699】树上的最短路(树剖+线段树优化建图)

    题意 给你一棵 $n$ 个点 $n-1$ 条边的树,每条边有一个通过时间.此外有 $m$ 个传送条件 $(x_1,y_1,x_2,y_2,c)$,表示从 $x_1$ 到 $x_2$ 的简单路径上的点可 ...

  8. G. 神圣的 F2 连接着我们 线段树优化建图+最短路

    这个题目和之前写的一个线段树优化建图是一样的. B - Legacy CodeForces - 787D 线段树优化建图+dij最短路 基本套路 之前这个题目可以相当于一个模板,直接套用就可以了. 不 ...

  9. B - Legacy CodeForces - 787D 线段树优化建图+dij最短路 基本套路

    B - Legacy CodeForces - 787D 这个题目开始看过去还是很简单的,就是一个最短路,但是这个最短路的建图没有那么简单,因为直接的普通建图边太多了,肯定会超时的,所以要用线段树来优 ...

随机推荐

  1. Python基础 第三章 使用字符串(1)精简版

    所有标准序列操作(索引,切片,乘法,成员资格检查,长度,最小值,最大值)都适于字符串. 但,字符串是不可变得,故所有得元素赋值和切片赋值都是非法的. 1. %s 转换说明符 设置字符串格式 %左边指定 ...

  2. 消息服务百科全书——Kafka基本原理介绍

    架构 1.1 总体架构 因为Kafka内在就是分布式的,一个Kafka集群通常包括多个代理. 为了均衡负载,将话题分成多个分区,每个代理存储一或多个分区.多个生产者和消费者能够同时生产和获取消息. 一 ...

  3. StoneTab标签页CAD插件 3.1.0

    //////////////////////////////////////////////////////////////////////////////////////////////////// ...

  4. ie/chorme 清除缓存 刷新js,css

    1 有时候你发现你刚改过的js 没有用,然后就是你的浏览器 没有清楚缓存,它可能还是保存的之前的 网页文件: chorme 浏览器下(版本:ver 59.0.3071.104(正式版本) (64 位) ...

  5. Python 序列操作符与函数(字符串)

    Python序列包括:元组.列表.字符串. 1.1 序列共同支持的函数: 函数 功能 说明 cmp(seq1,seq2) 比较序列大小 从左到右依次比较,直到比较出大小 len(seq1) 获取序列长 ...

  6. requests模块发送数据

    通过json dumps发送 import requests import json def agent(): """ 执行命令采集硬件信息 将执行的信息发送给API : ...

  7. eclipse svn 插件离线安装后connector获取不到的问题解决

    最近换了一家公司,写代码的电脑不给外网,所以各种麻烦的问题就来了,这里就说一下eclipse 安装SVN插件的一个小问题,虽说是小问题,但也折腾了我好几个小时,当然也可以不用这个插件,直接安装SVN客 ...

  8. java之JVM学习--简单了解GC算法

    JVM内存组成结构: (1)堆 所有通过new创建的对象都是在堆中分配内存,其大小可以通过-Xmx和-Xms来控制,堆被划分为新生代和旧生代,新生代又被进一步划分为Eden和Survivor区.Sur ...

  9. Spring Data JPA 大纲归纳

    第一天: springdatajpa day1:orm思想和hibernate以及jpa的概述和jpa的基本操作 day2:springdatajpa的运行原理以及基本操作 day3:多表操作,复杂查 ...

  10. Window10下Python3.7的wordcloud库的安装与基本使用

    1.进入Python官网→点击Pypl→搜索“wordcloud”.如下图所示: 2.使用cmd安装,具体操作如下: 使用 pip list 查看是否安装成功