[bzoj1892][bzoj2384][bzoj1461][Ceoi2011]Match/字符串的匹配_KMP_树状数组
2384: [Ceoi2011]Match 1892: Match 1461: 字符串的匹配
题目大意:

数据范围:

题解:
很巧妙的一道题呀。
需要对$KMP$算法有很深的理解才行。
首先我们需要发现,要求的这个东西跟字符串匹配有点像。
我们在单个模式串匹配的时候用到的$KMP$算法,合法匹配条件是两个字符完全相同。
但是这个题本质上就是要求子串离散化之后相同。
如果两个串离散化之后完全相同,等价于一个条件,就是每个数前面比它小的个数通通相等。
这是显然的。
所以我们尝试改变$KMP$的匹配模式,并且用树状数组维护长串的这个值。
先假设,所有数字两两不同。
对于要求离散化后的串,每个位置弄一个$f_i$表示这个串中,第$i$个位置前面有多少个比$b_i$小的。
我们把如图红色位置加入树状数组

然后我们查询$i$位置,有多少比$a_i$小的,跟$f_{nxt[i-1]}$相比。
如果相等表示这个位置可以匹配,如果不能,我们就把
$i-nxt_{i-1}$到$i-nxt_{nxt_{i - 1}}$。
这样就可以了。
如果离散化之后不完全相等的话,我们就考虑维护出来$i$前面和$b_i$相等的有多少个,再查就行了。
代码:
#include <bits/stdc++.h>
#define N 1000010
using namespace std;
int tree[N], a[N], b[N], c[N], rk[N], bfr[N], nxt[N], ans[N];
int n, m;
char *p1, *p2, buf[100000];
#define nc() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1 ++ )
int rd() {
int x = 0, f = 1;
char c = nc();
while (c < 48) {
if (c == '-')
f = -1;
c = nc();
}
while (c > 47) {
x = (((x << 2) + x) << 1) + (c ^ 48), c = nc();
}
return x * f;
}
inline int lowbit(int x) {
return x & (-x);
}
void update(int x, int val) {
for (int i = x; i <= m; i += lowbit(i))
tree[i] += val;
}
int query(int x) {
int ans = 0;
for (int i = x; i; i -= lowbit(i))
ans += tree[i];
return ans;
}
int main() {
n = rd(), m = rd();
for (int i = 1; i <= n; i ++ )
a[i] = rd(), rk[a[i]] = i;
for (int i = 1; i <= n; i ++ )
bfr[i] = query(rk[i]), update(rk[i], 1);
for (int i = 1; i <= m; i ++ )
b[i] = rd(), c[i] = b[i];
memset(tree, 0, sizeof tree);
// for (int i = 1; i <= n; i ++ )
// printf("%d ", bfr[i]);
// puts("");
for (int i = 2, j = 0; i <= n; i ++ ) {
while (query(rk[i]) != bfr[j + 1]) {
for (int k = i - j; k < i - nxt[j]; k ++ )
update(rk[k], -1);
j = nxt[j];
}
if (query(rk[i]) == bfr[j + 1]) {
update(rk[i], 1);
j ++ ;
}
nxt[i] = j;
}
// for (int i = 1; i <= n; i ++ ) {
// printf("%d ", nxt[i]);
// }
// puts("");
sort(c + 1, c + m + 1);
memset(tree, 0, sizeof tree);
for (int i = 1, j = 0; i <= m; i ++ ) {
// printf("i-> %d\n", i);
b[i] = lower_bound(c + 1, c + m + 1, b[i]) - c;
// printf("%d\n", b[i]);
// printf("%d %d %d\n", j, query(b[i]), bfr[j + 1]);
while (j == n || query(b[i]) != bfr[j + 1]) {
for (int k = i - j; k < i - nxt[j]; k ++ ) {
update(b[k], -1);
}
j = nxt[j];
}
if (query(b[i]) == bfr[j + 1]) {
update(b[i], 1);
j ++ ;
}
if(j == n)
ans[ ++ ans[0]] = i - j + 1;
}
printf("%d\n", ans[0]);
for (int i = 1; i < ans[0]; i ++ )
printf("%d ",ans[i]);
if(ans[0])
printf("%d\n", ans[ans[0]]);
return 0;
}
小结:好题啊,这个题真的不好想,我看题解都看了半天.......
[bzoj1892][bzoj2384][bzoj1461][Ceoi2011]Match/字符串的匹配_KMP_树状数组的更多相关文章
- 【poj 3167】Cow Patterns(字符串--KMP匹配+数据结构--树状数组)
题意:给2个数字序列 a 和 b ,问按从小到达排序后,a中的哪些子串与b的名次匹配. a 的长度 N≤100,000,b的长度 M≤25,000,数字的大小 K≤25. 解法:[思考]1.X 暴力. ...
- BZOJ_1264_[AHOI2006]基因匹配Match_树状数组
BZOJ_1264_[AHOI2006]基因匹配Match_树状数组 Description 基因匹配(match) 卡卡昨天晚上做梦梦见他和可可来到了另外一个星球,这个星球上生物的DNA序列由无数种 ...
- 洛谷P4303 [AHOI2006]基因匹配(树状数组)
传送门 我已经连这种傻逼题都不会了orz 正常的dp是$O(n^2)$的,枚举第一个数组的$j$,然后第二个数组的$k$,如果相等,则$dp[i]=dp[j]+1$,否则$dp[i]=dp[j]$ 然 ...
- 【bzoj2384】[Ceoi2011]Match 特殊匹配条件的KMP+树状数组
题目描述 给出两个长度分别为n.m的序列A.B,求出B的所有长度为n的连续子序列(子串),满足:序列中第i小的数在序列的Ai位置. 输入 第一行包含两个整数n, m (2≤n≤m≤1000000). ...
- 【BZOJ2384】[Ceoi2011]Match KMP
[BZOJ2384][Ceoi2011]Match Description 作为新一轮广告大战的一部分,格丁尼亚的一家大公司准备在城市的某处设置公司的标志(logo).公司经理决定用一些整栋的建筑来构 ...
- bzoj 1264 [AHOI2006]基因匹配Match(DP+树状数组)
1264: [AHOI2006]基因匹配Match Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 793 Solved: 503[Submit][S ...
- 【BZOJ1264】[AHOI2006]基因匹配Match DP+树状数组
[BZOJ1264][AHOI2006]基因匹配Match Description 基因匹配(match) 卡卡昨天晚上做梦梦见他和可可来到了另外一个星球,这个星球上生物的DNA序列由无数种碱基排列而 ...
- bzoj1264 [AHOI2006]基因匹配Match 树状数组+lcs
1264: [AHOI2006]基因匹配Match Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1255 Solved: 835[Submit][ ...
- BZOJ 1264: [AHOI2006]基因匹配Match 树状数组+DP
1264: [AHOI2006]基因匹配Match Description 基因匹配(match) 卡卡昨天晚上做梦梦见他和可可来到了另外一个星球,这个星球上生物的DNA序列由无数种碱基排列而成(地球 ...
随机推荐
- MySql大小写配置
新安装mysql5.7版本后,linux环境下默认是大小写敏感的.可以在客户端执行以下命令: SHOW VARIABLES LIKE '%case%' 可以看到 lower_case_table_na ...
- laravel Passport - Dingo/Api v2.0+Passport 实现 api 认证
第一部分: 安装passport 使⽤ Composer 依赖包管理器安装 Passport : composer require laravel/passport 接下来,将 Passport 的服 ...
- BZOJ 2834: 回家的路 Dijkstra
按照横,竖为方向跑一个最短路即可,算是水题~ #include <bits/stdc++.h> #define N 200005 #define E 2000000 #define set ...
- C#+Entity Frame work+MVC+Mysql+Apicloud共享汽车管理系统【论文】+Apicloud开发实例
摘要: 共享汽车管理系统主要分为后台管理PC端和手机App端,后台管理可以对指定停车点.车辆基本信息.用户注册信息.用户订单信息.推送消息进行管理和维护,而手机app用户可以通过手机号进行短信注册,根 ...
- 数据结构实验之链表七:单链表中重复元素的删除(SDUT 2122)
#include <bits/stdc++.h> using namespace std; typedef struct node { int data; struct node* nex ...
- JavaWeb_(Spring框架)SpringAOP面向切面编程
SpringAOP:面向切面编程(面向fifter编程) 通俗易懂术语:所有纵向重复的代码,我们提取成横向的代码 以下文章内容参考知乎:从0带你学习SpringAOP,彻底的理解AOP思想 传送门 1 ...
- 2017 ZSTU寒假排位赛 #4
题目链接:https://vjudge.net/contest/148543#overview. A题:n个罪犯,每个人有一个犯罪值,现在要从里面选出连续的c个人,每个人的犯罪值都不能超过t,问选法的 ...
- 01 关于jupyter的环境安装
jupyter notebook环境安装 一.什么是Jupyter Notebook? 1. 简介 Jupyter Notebook是基于网页的用于交互计算的应用程序.其可被应用于全过程计算:开发 ...
- PIMPL(private implementantion)模式(转载)
前记:请搜索PIMPL(private implementantion)模式和桥接模式, PIMPL是桥接模式的一种典型实现 以下转自:http://blog.csdn.net/nrc_douning ...
- POJ 2488 -- A Knight's Journey(骑士游历)
POJ 2488 -- A Knight's Journey(骑士游历) 题意: 给出一个国际棋盘的大小,判断马能否不重复的走过所有格,并记录下其中按字典序排列的第一种路径. 经典的“骑士游历”问题 ...