2384: [Ceoi2011]Match 1892: Match 1461: 字符串的匹配

题目大意

数据范围


题解

很巧妙的一道题呀。

需要对$KMP$算法有很深的理解才行。

首先我们需要发现,要求的这个东西跟字符串匹配有点像。

我们在单个模式串匹配的时候用到的$KMP$算法,合法匹配条件是两个字符完全相同。

但是这个题本质上就是要求子串离散化之后相同。

如果两个串离散化之后完全相同,等价于一个条件,就是每个数前面比它小的个数通通相等。

这是显然的。

所以我们尝试改变$KMP$的匹配模式,并且用树状数组维护长串的这个值。

先假设,所有数字两两不同。

对于要求离散化后的串,每个位置弄一个$f_i$表示这个串中,第$i$个位置前面有多少个比$b_i$小的。

我们把如图红色位置加入树状数组

然后我们查询$i$位置,有多少比$a_i$小的,跟$f_{nxt[i-1]}$相比。

如果相等表示这个位置可以匹配,如果不能,我们就把

$i-nxt_{i-1}$到$i-nxt_{nxt_{i - 1}}$。

这样就可以了。

如果离散化之后不完全相等的话,我们就考虑维护出来$i$前面和$b_i$相等的有多少个,再查就行了。

代码

#include <bits/stdc++.h>

#define N 1000010 

using namespace std;

int tree[N], a[N], b[N], c[N], rk[N], bfr[N], nxt[N], ans[N];

int n, m;

char *p1, *p2, buf[100000];

#define nc() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1 ++ )

int rd() {
int x = 0, f = 1;
char c = nc();
while (c < 48) {
if (c == '-')
f = -1;
c = nc();
}
while (c > 47) {
x = (((x << 2) + x) << 1) + (c ^ 48), c = nc();
}
return x * f;
} inline int lowbit(int x) {
return x & (-x);
} void update(int x, int val) {
for (int i = x; i <= m; i += lowbit(i))
tree[i] += val;
} int query(int x) {
int ans = 0;
for (int i = x; i; i -= lowbit(i))
ans += tree[i];
return ans;
} int main() {
n = rd(), m = rd();
for (int i = 1; i <= n; i ++ )
a[i] = rd(), rk[a[i]] = i;
for (int i = 1; i <= n; i ++ )
bfr[i] = query(rk[i]), update(rk[i], 1);
for (int i = 1; i <= m; i ++ )
b[i] = rd(), c[i] = b[i];
memset(tree, 0, sizeof tree); // for (int i = 1; i <= n; i ++ )
// printf("%d ", bfr[i]);
// puts(""); for (int i = 2, j = 0; i <= n; i ++ ) {
while (query(rk[i]) != bfr[j + 1]) {
for (int k = i - j; k < i - nxt[j]; k ++ )
update(rk[k], -1);
j = nxt[j];
}
if (query(rk[i]) == bfr[j + 1]) {
update(rk[i], 1);
j ++ ;
}
nxt[i] = j;
} // for (int i = 1; i <= n; i ++ ) {
// printf("%d ", nxt[i]);
// }
// puts(""); sort(c + 1, c + m + 1);
memset(tree, 0, sizeof tree); for (int i = 1, j = 0; i <= m; i ++ ) {
// printf("i-> %d\n", i);
b[i] = lower_bound(c + 1, c + m + 1, b[i]) - c;
// printf("%d\n", b[i]);
// printf("%d %d %d\n", j, query(b[i]), bfr[j + 1]);
while (j == n || query(b[i]) != bfr[j + 1]) {
for (int k = i - j; k < i - nxt[j]; k ++ ) {
update(b[k], -1);
}
j = nxt[j];
}
if (query(b[i]) == bfr[j + 1]) {
update(b[i], 1);
j ++ ;
}
if(j == n)
ans[ ++ ans[0]] = i - j + 1;
} printf("%d\n", ans[0]);
for (int i = 1; i < ans[0]; i ++ )
printf("%d ",ans[i]);
if(ans[0])
printf("%d\n", ans[ans[0]]);
return 0;
}

小结:好题啊,这个题真的不好想,我看题解都看了半天.......

[bzoj1892][bzoj2384][bzoj1461][Ceoi2011]Match/字符串的匹配_KMP_树状数组的更多相关文章

  1. 【poj 3167】Cow Patterns(字符串--KMP匹配+数据结构--树状数组)

    题意:给2个数字序列 a 和 b ,问按从小到达排序后,a中的哪些子串与b的名次匹配. a 的长度 N≤100,000,b的长度 M≤25,000,数字的大小 K≤25. 解法:[思考]1.X 暴力. ...

  2. BZOJ_1264_[AHOI2006]基因匹配Match_树状数组

    BZOJ_1264_[AHOI2006]基因匹配Match_树状数组 Description 基因匹配(match) 卡卡昨天晚上做梦梦见他和可可来到了另外一个星球,这个星球上生物的DNA序列由无数种 ...

  3. 洛谷P4303 [AHOI2006]基因匹配(树状数组)

    传送门 我已经连这种傻逼题都不会了orz 正常的dp是$O(n^2)$的,枚举第一个数组的$j$,然后第二个数组的$k$,如果相等,则$dp[i]=dp[j]+1$,否则$dp[i]=dp[j]$ 然 ...

  4. 【bzoj2384】[Ceoi2011]Match 特殊匹配条件的KMP+树状数组

    题目描述 给出两个长度分别为n.m的序列A.B,求出B的所有长度为n的连续子序列(子串),满足:序列中第i小的数在序列的Ai位置. 输入 第一行包含两个整数n, m (2≤n≤m≤1000000).  ...

  5. 【BZOJ2384】[Ceoi2011]Match KMP

    [BZOJ2384][Ceoi2011]Match Description 作为新一轮广告大战的一部分,格丁尼亚的一家大公司准备在城市的某处设置公司的标志(logo).公司经理决定用一些整栋的建筑来构 ...

  6. bzoj 1264 [AHOI2006]基因匹配Match(DP+树状数组)

    1264: [AHOI2006]基因匹配Match Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 793  Solved: 503[Submit][S ...

  7. 【BZOJ1264】[AHOI2006]基因匹配Match DP+树状数组

    [BZOJ1264][AHOI2006]基因匹配Match Description 基因匹配(match) 卡卡昨天晚上做梦梦见他和可可来到了另外一个星球,这个星球上生物的DNA序列由无数种碱基排列而 ...

  8. bzoj1264 [AHOI2006]基因匹配Match 树状数组+lcs

    1264: [AHOI2006]基因匹配Match Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1255  Solved: 835[Submit][ ...

  9. BZOJ 1264: [AHOI2006]基因匹配Match 树状数组+DP

    1264: [AHOI2006]基因匹配Match Description 基因匹配(match) 卡卡昨天晚上做梦梦见他和可可来到了另外一个星球,这个星球上生物的DNA序列由无数种碱基排列而成(地球 ...

随机推荐

  1. Codeforces Round #346 (Div. 2) B题

    B. Qualifying Contest Very soon Berland will hold a School Team Programming Olympiad. From each of t ...

  2. linux下pyenv的安装和使用

    一:pyenv介绍   项目地址:https://github.com/pyenv/pyenv   pyenv lets you easily switch between multiple vers ...

  3. JVM基本讲解

    1.数据类型 java虚拟机中,数据类型可以分为两类:基本类型和引用类型. 基本类型的变量保存原始值,即:它代表的值就是数值本身,而引用类型的变量保存引用值. “引用值”代表了某个对象的引用,而不是对 ...

  4. js 中null,undefined区别

    首先摘自阮一峰先生的文章: 大多数计算机语言,有且仅有一个表示"无"的值,比如,C语言的NULL,Java语言的null,Python语言的None,Ruby语言的nil. 有点奇 ...

  5. Linux设备驱动程序 之 模块参数

    模块支持参数的方法 内核允许驱动程序指定参数,这些参数可在运行insmod或者modprobe命令装载模块时赋值,modprobe还可以从它的配置文件(/etc/modporb.conf)中读取参数值 ...

  6. 7.Mahout菩萨

    1.Maout简介 2.机器学习介绍 3.Mahout算法介绍

  7. P1080 国王游戏 (等待高精度AC)

    P1080 国王游戏 题解 贪心策略:按照大臣左右手数字乘积从小到大排序 假设我们已经把大臣排了一个顺序 假定在这个顺序下我们可以保证  得到奖赏最多的大臣所得奖赏最少 那么我们一旦交换任意两个大臣, ...

  8. LC 970. Powerful Integers

    Given two non-negative integers x and y, an integer is powerful if it is equal to x^i + y^j for some ...

  9. easyUI之Messager(消息窗口)

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html> <hea ...

  10. linux安装sz、rz的方法,及安装zip

    Linux系统下安装rz/sz命令及使用说明   对于经常使用Linux系统的人员来说,少不了将本地的文件上传到服务器或者从服务器上下载文件到本地,rz / sz命令很方便的帮我们实现了这个功能,但是 ...