7.编写mapreduce案例
在写一个mapreduce类之前先添加依赖包
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.</modelVersion> <groupId>com.it19gong</groupId>
<artifactId>testmaven</artifactId>
<version>0.0.-SNAPSHOT</version>
<packaging>jar</packaging> <name>testmaven</name>
<url>http://maven.apache.org</url> <properties>
<project.build.sourceEncoding>UTF-</project.build.sourceEncoding>
</properties> <dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>jdk.tools</groupId>
<artifactId>jdk.tools</artifactId>
<version>1.8</version>
<scope>system</scope>
<systemPath>${JAVA_HOME}/lib/tools.jar</systemPath>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.6.</version>
</dependency> <dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.6.</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.6.</version>
</dependency> <dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.6.</version>
</dependency> <dependency>
<groupId>org.apache.mrunit</groupId>
<artifactId>mrunit</artifactId>
<version>1.1.</version>
<classifier>hadoop2</classifier>
<scope>test</scope>
</dependency> <dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-core</artifactId>
<version>2.6.</version>
</dependency> <dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-yarn-api</artifactId>
<version>2.6.</version>
</dependency> <dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-auth</artifactId>
<version>2.6.</version>
</dependency> <dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-minicluster</artifactId>
<version>2.6.</version>
<scope>test</scope>
</dependency> <dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-jobclient</artifactId>
<version>2.6.</version>
<scope>provided</scope>
</dependency> </dependencies>
</project>
新建一个WordCountMapper类


package com.it19gong.testmaven; import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable>{
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException
{
//拿到一行数据转换为string
String line = value.toString();
//将这一行切分出各个单词
String[] words = line.split(" ");
//遍历数组,输出<单词,1>
for(String word:words)
{
context.write(new Text(word), new IntWritable());
}
}
}
定义WordCountReducer类

package com.it19gong.testmaven; import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; public class WordCountReducer extends Reducer<Text,IntWritable,Text,IntWritable>{
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
//定义一个计数器
int count = ;
//遍历这一组kv的所有v,累加到count中
for(IntWritable value:values){
count += value.get();
}
context.write(key, new IntWritable(count));
}
}
定义WordCountRunner类

package com.it19gong.testmaven; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordCountRunner {
//把业务逻辑相关的信息(哪个是mapper,哪个是reducer,要处理的数据在哪里,输出的结果放哪里……)描述成一个job对象
//把这个描述好的job提交给集群去运行
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job wcjob = Job.getInstance(conf);
//指定我这个job所在的jar包
// wcjob.setJar("/home/hadoop/wordcount.jar");
wcjob.setJarByClass(WordCountRunner.class); wcjob.setMapperClass(WordCountMapper.class);
wcjob.setReducerClass(WordCountReducer.class);
//设置我们的业务逻辑Mapper类的输出key和value的数据类型
wcjob.setMapOutputKeyClass(Text.class);
wcjob.setMapOutputValueClass(IntWritable.class);
//设置我们的业务逻辑Reducer类的输出key和value的数据类型
wcjob.setOutputKeyClass(Text.class);
wcjob.setOutputValueClass(IntWritable.class); //指定要处理的数据所在的位置
// FileInputFormat.setInputPaths(wcjob, "hdfs://hdp-server01:9000/wordcount/data/big.txt");
FileInputFormat.setInputPaths(wcjob, new Path(args[]));
//指定处理完成之后的结果所保存的位置
// FileOutputFormat.setOutputPath(wcjob, new Path("hdfs://hdp-server01:9000/wordcount/output/"));
FileOutputFormat.setOutputPath(wcjob, new Path(args[])); //向yarn集群提交这个job
boolean res = wcjob.waitForCompletion(true);
System.exit(res?:);
}
}
打成架包



把打包好的架包上传到集群

然后在集群上运行一个wordcount小案例
hadoop jar mr.jar com.it19gong.testmaven.WordCountRunner /wc_input /wc_output



7.编写mapreduce案例的更多相关文章
- hive--构建于hadoop之上、让你像写SQL一样编写MapReduce程序
hive介绍 什么是hive? hive:由Facebook开源用于解决海量结构化日志的数据统计 hive是基于hadoop的一个数据仓库工具,可以将结构化的数据映射为数据库的一张表,并提供类SQL查 ...
- [Hadoop in Action] 第4章 编写MapReduce基础程序
基于hadoop的专利数据处理示例 MapReduce程序框架 用于计数统计的MapReduce基础程序 支持用脚本语言编写MapReduce程序的hadoop流式API 用于提升性能的Combine ...
- Hadoop:使用Mrjob框架编写MapReduce
Mrjob简介 Mrjob是一个编写MapReduce任务的开源Python框架,它实际上对Hadoop Streaming的命令行进行了封装,因此接粗不到Hadoop的数据流命令行,使我们可以更轻松 ...
- mapreduce案例:获取PI的值
mapreduce案例:获取PI的值 * content:核心思想是向以(0,0),(0,1),(1,0),(1,1)为顶点的正方形中投掷随机点. * 统计(0.5,0.5)为圆心的单位圆中落点占总落 ...
- 【Hadoop离线基础总结】MapReduce案例之自定义groupingComparator
MapReduce案例之自定义groupingComparator 求取Top 1的数据 需求 求出每一个订单中成交金额最大的一笔交易 订单id 商品id 成交金额 Order_0000005 Pdt ...
- MapReduce案例:统计共同好友+订单表多表合并+求每个订单中最贵的商品
案例三: 统计共同好友 任务需求: 如下的文本, A:B,C,D,F,E,OB:A,C,E,KC:F,A,D,ID:A,E,F,LE:B,C,D,M,LF:A,B,C,D,E,O,MG:A,C,D,E ...
- Hadoop Mapreduce 案例 wordcount+统计手机流量使用情况
mapreduce设计思想 概念:它是一个分布式并行计算的应用框架它提供相应简单的api模型,我们只需按照这些模型规则编写程序,即可实现"分布式并行计算"的功能. 案例一:word ...
- Hadoop:使用原生python编写MapReduce
功能实现 功能:统计文本文件中所有单词出现的频率功能. 下面是要统计的文本文件 [/root/hadooptest/input.txt] foo foo quux labs foo bar quux ...
- 【尚学堂·Hadoop学习】MapReduce案例2--好友推荐
案例描述 根据好友列表,推荐好友的好友 数据集 tom hello hadoop cat world hadoop hello hive cat tom hive mr hive hello hive ...
随机推荐
- C++头文件中#pragma once与#ifndef……#define……#endif
两者功能一样,防止重复包含被多次编译.建议头文件加入#pragma once C++头文件开头的两句与结尾的一句#ifndef <标识>#define <标识>类代码#endi ...
- php判断文件是否为txt文件
可以使用pathinfo方法来通过后缀名进行判断文件类型. /** * 获取文件后缀(如果文件名为11.11,11不是后缀,会默认11为后缀) * $file string 文件路径或者文件名 */ ...
- BIOS之于系统启动
#BIOS之于操作系统 操作系统从开机通电到系统启动成功(执行main函数)分为3个步骤 启动BIOS,准备实模式下中断向量表和中断服务程序 从启动盘加载操作系统程序(包括boot镜像和root文件系 ...
- 获取link后的参数值
getQueryString:function(name){ var reg = new RegExp('(^|&)' + name + '=([^&]*)(&|$)', 'i ...
- oracle基本使用
一.数据库 1.1 主流数据库 微软: sql server .access 瑞典MySQL: AB公司mysql IBM公司: db2 美国Sybase公司:sybase 美国oracle公司: o ...
- UVA 11174 Stand in a Line,UVA 1436 Counting heaps —— (组合数的好题)
这两个题的模型是有n个人,有若干的关系表示谁是谁的父亲,让他们进行排队,且父亲必须排在儿子前面(不一定相邻).求排列数. 我们假设s[i]是i这个节点,他们一家子的总个数(或者换句话说,等于他的子孙数 ...
- tornado框架学习
tornado是一个非阻塞的web服务器框架,每秒可以处理上千个客户端连接(都是在一个线程中,不需要为每个客户端创建线程,资源消耗少),适合用来开发web长连接应用,如long polling(轮询) ...
- LC 835. Image Overlap
Two images A and B are given, represented as binary, square matrices of the same size. (A binary ma ...
- docker 搭建私有云盘 Seafile
缘起 现如今各种云存储服务其实挺多的,国外有经典的DropBox.Google Drive.微软的OneDrive等,国内也有可以免费使用的各种云. 那么为什么想要搭建私有云存储呢?主要是本着“自己的 ...
- Spring Boot 2.0 集成 Druid 数据源
一.Maven项目依赖 <!-- 开发者工具(热部署 修改classpath下的文件springboot自动重启) --> <dependency> <groupId&g ...