题目链接:https://www.jisuanke.com/contest/2870?view=challenges

题目大意:给出n个都正面朝下的硬币,操作m次,每次都选取k枚硬币抛到空中,求操作m次后,硬币向上的期望值。

思路:

1.期望跟概率还是有点不同的,期望要枚举出抛的所有的情况,然后求sigma(i * dp[][])

2.dp[i][j]表示进行i次操作后,有j枚硬币向上的概率。这样就可以求最后的硬币向上的期望了。

3.值得注意的是,预处理的组合数要开 double 型。

代码:

 #include<stdio.h>
#include<string.h>
#define mem(a, b) memset(a, b, sizeof(a)) double C[][];//组合数
double P[]; //翻i个硬币的概率,因为正反都是 1 / 2,所以用一维数组表示
double dp[][]; //表示操作i次,有j枚硬币正面向上的概率
int n, m, k; int main()
{
//预处理组合数
C[][] = ;
for(int i = ; i <= ; i ++)
{
C[i][] = ;
for(int j = ; j <= i; j ++)
{
C[i][j] = C[i - ][j - ] + C[i - ][j];
}
}
//预处理i个硬币的概率
P[] = 1.0;
for(int i = ; i <= ; i ++)
P[i] = 0.5 * P[i - ];
int T;
scanf("%d", &T);
while(T --)
{
mem(dp, );
dp[][] = 1.0;
scanf("%d%d%d", &n, &m, &k);
for(int i = ; i < m; i ++)//枚举操作次数
{
for(int j = ; j <= n; j ++)//枚举硬币正面向上的个数
{
if(dp[i][j] == )
continue;
for(int q = ; q <= k; q ++)//枚举抛k枚硬币有多少枚硬币会朝上,枚举所有情况,才是求期望
{
if((n - j) >= k)
dp[i + ][j + q] += dp[i][j] * C[k][q] * P[k];
else
dp[i + ][j + q - (k - (n - j))] += dp[i][j] * C[k][q] * P[k];
}
}
}
double ans = 0.0;
for(int i = ; i <= n; i ++)
{
ans += dp[m][i] * i;
}
printf("%.3lf\n", ans);
}
return ;
}

ACM-ICPC 2017 Asia Urumqi A. Coins【期望dp】的更多相关文章

  1. ACM-ICPC 2017 Asia Urumqi A. Coins

    Alice and Bob are playing a simple game. They line up a row of n identical coins, all with the heads ...

  2. 2017 ICPC Asia Urumqi A.coins (概率DP + 期望)

    题目链接:Coins Description Alice and Bob are playing a simple game. They line up a row of nn identical c ...

  3. ACM-ICPC 2017 Asia Urumqi:A. Coins(DP) 组合数学

    Alice and Bob are playing a simple game. They line up a row of nn identical coins, all with the head ...

  4. ACM ICPC 2017 Warmup Contest 9 I

    I. Older Brother Your older brother is an amateur mathematician with lots of experience. However, hi ...

  5. ACM ICPC 2017 Warmup Contest 9 L

    L. Sticky Situation While on summer camp, you are playing a game of hide-and-seek in the forest. You ...

  6. ACM-ICPC 2017 Asia Urumqi G. The Mountain

    All as we know, a mountain is a large landform that stretches above the surrounding land in a limite ...

  7. BZOJ4872 [六省联考2017]分手是祝愿 【期望dp】

    题目 Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态,下标为 从 1 ...

  8. 洛谷P3750 [六省联考2017]分手是祝愿(期望dp)

    传送门 嗯……概率期望这东西太神了…… 先考虑一下最佳方案,肯定是从大到小亮的就灭(这个仔细想一想应该就能发现) 那么直接一遍枚举就能$O(nlogn)$把这个东西给搞出来 然后考虑期望dp,设$f[ ...

  9. ACM-ICPC 2017 Asia Urumqi:A. Coins(DP)

    挺不错的概率DP,看似基础,实则很考验扎实的功底 这题很明显是个DP,为什么???找规律或者算组合数这种概率,N不可能给的这么友善... 因为DP一般都要在支持N^2操作嘛. 稍微理解一下,这DP[i ...

随机推荐

  1. detach([expr]) 从DOM中删除所有匹配的元素。

    detach([expr]) 概述 从DOM中删除所有匹配的元素.大理石构件 这个方法不会把匹配的元素从jQuery对象中删除,因而可以在将来再使用这些匹配的元素.与remove()不同的是,所有绑定 ...

  2. 2019ICPC上海网络赛 A Lightning Routing I 点分树(动态点分治)+线段树

    题意 给一颗带边权的树,有两种操作 \(C~e_i~w_i\),将第\(e_i\)条边的边权改为\(w_i\). \(Q~v_i\),询问距\(v_i\)点最远的点的距离. 分析 官方题解做法:动态维 ...

  3. IP地址正则表达式的写法

    IP地址的正则表达式写法 这里讲的是IPv4的地址格式,总长度 32位=4段*8位,每段之间用.分割, 每段都是0-255之间的十进制数值. 将0-255用正则表达式表示,可以分成一下几块来分别考虑: ...

  4. Nginx访问非常慢

    由于域名绑定服务器IP,而服务器上部署了多个应用,想都通过域名访问,故弄了个Nginx转发. 加了Nginx以后,服务访问明显卡顿. 查看配置: location / { proxy_pass htt ...

  5. redis快照关闭了导致不能持久化的问题

    在使用redis的时候我们经常会遇到这种bug:   Python与Redis交互时,设置数据出现下列报错信息:   MISCONF Redis is configured to save RDB s ...

  6. Leetcode题目121.买卖股票的最佳时机(简单)

    题目描述: 给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格. 如果你最多只允许完成一笔交易(即买入和卖出一支股票),设计一个算法来计算你所能获取的最大利润. 注意你不能在买入股票前卖出 ...

  7. spark安装(windows)

    1.安装jdk 因为spark是依赖java环境的,所以在安装spark之前你先确保你的电脑上有java环境. 具体怎么操作,百度"jdk安装" 2.安装spark 首先到官网下载 ...

  8. ubuntu下最好用的防火墙shadaarp ,带主动防御

          shada-arpfirewall-1.0alpha3.i386.rpm 所有基于rpm的x86 Linux(内核版本>=2.6.27) Mar 11 82.9 KB     sha ...

  9. 用单元测试来调试SilverFish AI

    [TestFixture] public class AiTest { [Test] public void Test() { Settings.Instance.LogFolderPath = @& ...

  10. uni-app 的更新及碰到的问题

    uni-app 的更新 我这个是针对 app 的测试,没有考虑 小程序 及 h5,如需考虑请参考 uni-app 的条件编译 当我们将文件打包好之后,我们在手机上就可以下载 apk 文件,安装到我们的 ...