【LOJ】#3123. 「CTS2019 | CTSC2019」重复
LOJ3123
60pts
正难则反,熟练转成总方案数减掉每个片段都大于等于s的字典序的方案
按照一般的套路建出kmp上每个点加一个字符的转移边的图(注意这个图开始字母必须是nxt链中下一个相邻的字符最大的一个,不然就字典序比它小了)
然后大力猜结论可能是走m步走出一个环的个数,很容易发现这是不漏的,因为一个串无限重复最后都会走出一个m步的(不一定是简单环的)环
不重的我没证出来,抱着试试看的心态我们写个极其简单的dp,发现它过了……
100pts
很容易发现每个点要么走到nxt链中下一个相邻字符中最大的一个,要么走到0
我们对于一个环可以分成经过0的和不经过0的
不经过0的从每个点开始走m步判断一下就可以
经过0的可以通过枚举每个点走了几步没到0的边然后走了一步到0
我们预处理出\(f[i][j]\)表示走了i步到达j点,枚举初始走了几步相乘即可
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define eps 1e-10
#define MAXN 2005
#define ba 47
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 +c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
const int MOD = 998244353;
int M,N,nxt[MAXN],to[MAXN][26],mx[MAXN];
int dp[MAXN][MAXN];
char s[MAXN];
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
void update(int &x,int y) {
x = inc(x,y);
}
int fpow(int x,int c) {
int res = 1,t = x;
while(c) {
if(c & 1) res = mul(res,t);
t = mul(t,t);
c >>= 1;
}
return res;
}
void Solve() {
read(M);
scanf("%s",s + 1);
N = strlen(s + 1);
for(int i = 2 ; i <= N ; ++i) {
int p = nxt[i - 1];
while(p && s[i] != s[p + 1]) p = nxt[p];
if(s[i] == s[p + 1]) nxt[i] = p + 1;
else nxt[i] = 0;
}
for(int i = 0 ; i <= N ; ++i) {
mx[i] = mx[nxt[i]];
if(i != N) mx[i] = max(mx[i],s[i + 1] - 'a');
for(int j = 0 ; j < mx[i] ; ++j) to[i][j] = -1;
for(int j = mx[i] ; j < 26 ; ++j) {
if('a' + j == s[i + 1]) to[i][j] = i + 1;
else {
int p = nxt[i];
while(to[p][j] == -1) p = nxt[p];
to[i][j] = to[p][j];
}
}
}
int ans = 0;
dp[0][0] = 1;
for(int i = 0 ; i < M ; ++i) {
for(int j = 0 ; j <= N ; ++j) {
if(!dp[i][j]) continue;
for(int h = mx[j] ; h < 26 ; ++h) {
update(dp[i + 1][to[j][h]],dp[i][j]);
}
}
}
for(int i = 0 ; i <= N ; ++i) {
int u = i;
for(int j = 0 ; j < M ; ++j) {
update(ans,mul(25 - mx[u],dp[M - j - 1][i]));
u = to[u][mx[u]];
}
if(u == i) update(ans,1);
}
out(inc(fpow(26,M),MOD - ans));enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
return 0;
}
【LOJ】#3123. 「CTS2019 | CTSC2019」重复的更多相关文章
- Loj #3124. 「CTS2019 | CTSC2019」氪金手游
Loj #3124. 「CTS2019 | CTSC2019」氪金手游 题目描述 小刘同学是一个喜欢氪金手游的男孩子. 他最近迷上了一个新游戏,游戏的内容就是不断地抽卡.现在已知: - 卡池里总共有 ...
- LOJ 3124 「CTS2019 | CTSC2019」氪金手游——概率+树形DP
题目:https://loj.ac/problem/3124 看了题解:https://www.cnblogs.com/Itst/p/10883880.html 先考虑外向树. 考虑分母是 \( \s ...
- LOJ #3119「CTS2019 | CTSC2019」随机立方体 (容斥)
博客链接 里面有个下降幂应该是上升幂 还有个bk的式子省略了k^3 CODE 蛮短的 #include <bits/stdc++.h> using namespace std; const ...
- LOJ #3119. 「CTS2019 | CTSC2019」随机立方体 组合计数+二项式反演
好神的一道计数题呀. code: #include <cstdio> #include <algorithm> #include <cstring> #define ...
- @loj - 3120@ 「CTS2019 | CTSC2019」珍珠
目录 @description@ @solution@ @accepted code@ @details@ @description@ 有 \(n\) 个在范围 \([1, D]\) 内的整数均匀随机 ...
- 「CTS2019 | CTSC2019」氪金手游 解题报告
「CTS2019 | CTSC2019」氪金手游 降 智 好 题 ... 考场上签到失败了,没想容斥就只打了20分暴力... 考虑一个事情,你抽中一个度为0的点,相当于把这个点删掉了(当然你也只能抽中 ...
- 「CTS2019 | CTSC2019」随机立方体 解题报告
「CTS2019 | CTSC2019」随机立方体 据说这是签到题,但是我计数学的实在有点差,这里认真说一说. 我们先考虑一些事实 如果我们在位置\((x_0,y_0,z_0)\)钦定了一个极大数\( ...
- LOJ 3120: 洛谷 P5401: 「CTS2019 | CTSC2019」珍珠
题目传送门:LOJ #3120. 题意简述: 称一个长度为 \(n\),元素取值为 \([1,D]\) 的整数序列是合法的,当且仅当其中能够选出至少 \(m\) 对相同元素(不能重复选出元素). 问合 ...
- LOJ 3119: 洛谷 P5400: 「CTS2019 | CTSC2019」随机立方体
题目传送门:LOJ #3119. 题意简述: 题目说的很清楚了. 题解: 记恰好有 \(i\) 个极大的数的方案数为 \(\mathrm{cnt}[i]\),则答案为 \(\displaystyle\ ...
随机推荐
- hdu 5514 Frogs 容斥思想+gcd 银牌题
Frogs Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submi ...
- Linux环境下Gitblit服务搭建及秘钥配置
一.安装gitblit服务 1.下载地址 https://pan.baidu.com/s/1wQ3TEE_gw5xZvyFPZB9xFg 2.上传至linux服务器并解压缩 tar xvf gitbl ...
- [笔记]C++声明返回数组指针的函数
数组指针的声明:type (*name)[size]; 由于数组不能拷贝,所以函数不能返回数组.但是函数可以返回指针和引用,所以函数可以返回数组指针或引用. 和数组指针的声明类似: type (*fu ...
- 关于使用express作为spa应用服务的问题
前端工程师应该知道,spa是基于前端路由的单页面应用,如果服务端不做相应的配置,会经常出现404的问题. 一般的做法是默认返回应用的首页. express // 安装相关依赖 npm install ...
- Dubbo 节点telnet测试
Dubbo 节点telnet测试 本地安装telnet客户端 Telnet 服务地址 端口 如telnet 127.0.0.1 1234 出现此对话框表示连接成功 输入status –l 会显 ...
- legend3---15、像粉丝数、关注数、课程数等数量数据如何处理
legend3---15.像粉丝数.关注数.课程数等数量数据如何处理 一.总结 一句话总结: 在主表中加入这种数量字段:比如在用户表中加入粉丝数,关注数字段 普通更新:增加数量的时候将数据插入到关联表 ...
- torch学习中的难点
https://github.com/zergtant/pytorch-handbook/blob/master/chapter2/2.1.4-pytorch-basics-data-lorder.i ...
- 【互联网运营P1】
一.导论 [运营]是什么 二.运营的职业分工和职能发展 三.转化型文案 4个高转化率短文案的常见姿势 2个短文案写作的核心要则 中长型转化文案的写作 针对所有问题点依次进行详细解读 四.第三方推广 常 ...
- 如何快速查找到HTML头尾对应标签?
在使用Atom编辑器整理HTML代码的时候,希望快速找到HTML头尾对应的标签. ctrl+m 试试看
- Java同步数据结构之ArrayBlockingQueue
引言 作为BlockingQueue最常见的实现类之一,ArrayBlockingQueue是通过数组实现的FIFO先进先出有界阻塞队列,它的大小在实例被初始化的时候就被固定了,不能更改.该类支持一个 ...