[python] a little deep learning case
from numpy import exp, array, random, dot class NeuralNetwork():
def __init__(self):
random.seed(1)
self.synaptic_weights = 2 * random.random((3,1)) - 1 def __sigmoid(self, x):
return 1 / (1 + exp(-x)) def __sigmoid_derivative(self, x):
return x*(1-x) def train(self, training_set_inputs, training_set_outputs, number_of_training_iterations):
for iteration in range(number_of_training_iterations):
output = self.think(training_set_inputs)
error = training_set_outputs - output
adjustment = dot(training_set_inputs.T, error*self.__sigmoid_derivative(output))
self.synaptic_weights += adjustment def think(self, inputs):
return self.__sigmoid(dot(inputs, self.synaptic_weights)) if __name__ == '__main__':
neural_network = NeuralNetwork()
print('随机的初始突触权重')
print(neural_network.synaptic_weights) training_set_inputs = array([[0,0,1], [1,1,1], [1,0,1], [0,1,1]])
training_set_outputs = array([[0,1,1,0]]).T neural_network.train(training_set_inputs, training_set_outputs, 10000) print('训练后的突触权重')
print(neural_network.synaptic_weights) print('考虑新的形势[1, 0, 0]')
print(neural_network.think(array([1, 0, 0])))
[python] a little deep learning case的更多相关文章
- Python深度学习(Deep Learning with Python) 中文版+英文版+源代码
Keras作者.谷歌大脑François Chollet最新撰写的深度学习Python教程实战书籍(2017年12月出版)介绍深入学习使用Python语言和强大Keras库,详实新颖.PDF高清中文版 ...
- Python深度学习 deep learning with Python
内容简介 本书由Keras之父.现任Google人工智能研究员的弗朗索瓦•肖莱(François Chollet)执笔,详尽介绍了用Python和Keras进行深度学习的探索实践,涉及计算机视觉.自然 ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...
- What are some good books/papers for learning deep learning?
What's the most effective way to get started with deep learning? 29 Answers Yoshua Bengio, ...
- 机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...
- 【深度学习Deep Learning】资料大全
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books by Yoshua Bengio, Ian Goodfellow and Aaron C ...
- 课程一(Neural Networks and Deep Learning),第一周(Introduction to Deep Learning)—— 1、经常提及的问题
Frequently Asked Questions Congratulations to be part of the first class of the Deep Learning Specia ...
- Deep Learning Libraries by Language
Deep Learning Libraries by Language Tweet Python Theano is a python library for defining and ...
- How to Grid Search Hyperparameters for Deep Learning Models in Python With Keras
Hyperparameter optimization is a big part of deep learning. The reason is that neural networks are n ...
随机推荐
- Python GDAL
https://gdal.org/ https://pypi.org/project/GDAL/ gdal whl:https://blog.csdn.net/u012581929/article/d ...
- apt 和 apt-get的区别
apt 和 apt-get的区别 - liudsl的博客 - CSDN博客 https://blog.csdn.net/liudsl/article/details/79200134 Linux软件 ...
- hadoop hdfs hbase优化实例
需求描述: 从hdfs中获取数据,字段url需要计算出url_type 通过进行hive的left outer join ,效率非常低.故将url的类型导入到hbase中,利用hbase快速查询的特点 ...
- django xadmin安装
安装方式一: 下载xadmin源码文件,下载之后,解压缩,将解压目录中的xadmin文件夹拷贝到项目项目文件中.下载地址:https://codeload.github.com/sshwsfc/xad ...
- Leetcode题目31.下一个排列(中等)
题目描述: 实现获取下一个排列的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列. 如果不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排列). 必须原地修改,只允许使用额外 ...
- Spring核心内容-认识bean
- 实用的60个CSS代码片段[上]
1.垂直对齐 如果你用CSS,则你会有困惑:我该怎么垂直对齐容器中的元素?现在,利用CSS3的Transform,可以很优雅的解决这个困惑: .verticalcenter{ position: re ...
- SAX解析示例代码和原理
import java.io.File; import javax.xml.parsers.SAXParser; import javax.xml.parsers.SAXParserFactory; ...
- js解析后台传过来的json
java ,action public void print(String rs){ PrintWriter out; try { HttpServletResponse response = Ser ...
- Tomcat远程调试参数
Linux: 关闭防火墙 vim catalina.sh export CATALINA_OPTS="-server -Xdebug -Xnoagent -Djava.compiler=NO ...