from numpy import exp, array, random, dot

class NeuralNetwork():
def __init__(self):
random.seed(1)
self.synaptic_weights = 2 * random.random((3,1)) - 1 def __sigmoid(self, x):
return 1 / (1 + exp(-x)) def __sigmoid_derivative(self, x):
return x*(1-x) def train(self, training_set_inputs, training_set_outputs, number_of_training_iterations):
for iteration in range(number_of_training_iterations):
output = self.think(training_set_inputs)
error = training_set_outputs - output
adjustment = dot(training_set_inputs.T, error*self.__sigmoid_derivative(output))
self.synaptic_weights += adjustment def think(self, inputs):
return self.__sigmoid(dot(inputs, self.synaptic_weights)) if __name__ == '__main__':
neural_network = NeuralNetwork()
print('随机的初始突触权重')
print(neural_network.synaptic_weights) training_set_inputs = array([[0,0,1], [1,1,1], [1,0,1], [0,1,1]])
training_set_outputs = array([[0,1,1,0]]).T neural_network.train(training_set_inputs, training_set_outputs, 10000) print('训练后的突触权重')
print(neural_network.synaptic_weights) print('考虑新的形势[1, 0, 0]')
print(neural_network.think(array([1, 0, 0])))

  

[python] a little deep learning case的更多相关文章

  1. Python深度学习(Deep Learning with Python) 中文版+英文版+源代码

    Keras作者.谷歌大脑François Chollet最新撰写的深度学习Python教程实战书籍(2017年12月出版)介绍深入学习使用Python语言和强大Keras库,详实新颖.PDF高清中文版 ...

  2. Python深度学习 deep learning with Python

    内容简介 本书由Keras之父.现任Google人工智能研究员的弗朗索瓦•肖莱(François Chollet)执笔,详尽介绍了用Python和Keras进行深度学习的探索实践,涉及计算机视觉.自然 ...

  3. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

  4. What are some good books/papers for learning deep learning?

    What's the most effective way to get started with deep learning?       29 Answers     Yoshua Bengio, ...

  5. 机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...

  6. 【深度学习Deep Learning】资料大全

    最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron C ...

  7. 课程一(Neural Networks and Deep Learning),第一周(Introduction to Deep Learning)—— 1、经常提及的问题

    Frequently Asked Questions Congratulations to be part of the first class of the Deep Learning Specia ...

  8. Deep Learning Libraries by Language

    Deep Learning Libraries by Language Tweet         Python Theano is a python library for defining and ...

  9. How to Grid Search Hyperparameters for Deep Learning Models in Python With Keras

    Hyperparameter optimization is a big part of deep learning. The reason is that neural networks are n ...

随机推荐

  1. Python GDAL

    https://gdal.org/ https://pypi.org/project/GDAL/ gdal whl:https://blog.csdn.net/u012581929/article/d ...

  2. apt 和 apt-get的区别

    apt 和 apt-get的区别 - liudsl的博客 - CSDN博客  https://blog.csdn.net/liudsl/article/details/79200134 Linux软件 ...

  3. hadoop hdfs hbase优化实例

    需求描述: 从hdfs中获取数据,字段url需要计算出url_type 通过进行hive的left outer join ,效率非常低.故将url的类型导入到hbase中,利用hbase快速查询的特点 ...

  4. django xadmin安装

    安装方式一: 下载xadmin源码文件,下载之后,解压缩,将解压目录中的xadmin文件夹拷贝到项目项目文件中.下载地址:https://codeload.github.com/sshwsfc/xad ...

  5. Leetcode题目31.下一个排列(中等)

    题目描述: 实现获取下一个排列的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列. 如果不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排列). 必须原地修改,只允许使用额外 ...

  6. Spring核心内容-认识bean

  7. 实用的60个CSS代码片段[上]

    1.垂直对齐 如果你用CSS,则你会有困惑:我该怎么垂直对齐容器中的元素?现在,利用CSS3的Transform,可以很优雅的解决这个困惑: .verticalcenter{ position: re ...

  8. SAX解析示例代码和原理

    import java.io.File; import javax.xml.parsers.SAXParser; import javax.xml.parsers.SAXParserFactory; ...

  9. js解析后台传过来的json

    java ,action public void print(String rs){ PrintWriter out; try { HttpServletResponse response = Ser ...

  10. Tomcat远程调试参数

    Linux: 关闭防火墙 vim catalina.sh export CATALINA_OPTS="-server -Xdebug -Xnoagent -Djava.compiler=NO ...