1. Logistic回归是用于二分分类的算法。

对于m个样本的训练集,我们可能会习惯于使用for循环一个个处理,但在机器学习中,是把每一个样本写成一个列向量x,然后把m个列向量拼成一个矩阵X。这个矩阵是nx*m大小,nx是每个样本的特征数量,m是样本个数,X.shape=(nx,m)。也可以把特征写成横向量然后竖着拼成m*n的矩阵,NG说前一种列向量的表示方便运算。输出Y是1*m的向量,Y.shape=(1,m)。

把样本表示成矩阵形式后,可以对它进行线性操作wTx+b,由于二分分类的标签为0或1,所以需要把线性变换的值变换到[0, 1]之间,即y_hat = σ(wTx+b),这里σ(z)=1/(1+e-z)就是sigmoid函数。

Loss (error) function描述了预测的输出y_hat和真实的标签y有多接近。误差平方是个很符合直觉的选择,但是不方便梯度下降法求解。在logistic回归中使用的loss funciton是L(y_hat, y) = -( ylog(y_hat) + (1-y)log(1-y_hat) ). 直观地说为什么这个loss function合理呢?如果y=1,L(y_hat ,y)=-ylog(y_hat),L越小越好,所以y_hat越大越好,又因为输出在[0, 1]区间,所以y_hat会趋向于1;如果y=0, L=-log(1-y_hat), y_hat会趋向于0。更深层次的说,这里的loss function描述的是概率的log,而如果每个样本都是独立同分布的,则整体的概率是每个样本概率的累乘,取log之后就是累加。

Loss function描述了单个样本的损失,Cost function描述了在整个样本空间的损失,J(w, b)是所有样本的loss function的平均值。这种方式构造的cost funciton是凸函数,使得优化问题是一个凸优化问题。

Logistic回归可以被看作是非常小的神经网络。

2. 神经网络的计算过程分为前向传播和反向传播,前向传播是计算神经网络的输出,反向传播是计算对应的梯度。

可以用计算图把复杂计算过程拆分成简单计算的堆叠。

在Logistic回归的例子中,算法使用了2个嵌套的for循环,外层for循环遍历所有的样本,内层for循环遍历单个样本内所有的特征。这样做的缺点是for循环效率低,特别是当数据量越来越大的情况下。所以就要使用向量化技术摆脱for循环。

3. 向量化。为计算 z=wTx+b,w和x都是n*1的向量,python中 z=np.dot(w,x)+b 会比for循环快很多(NG随便跑了个例子就相差300倍的耗时)。这是因为这种内置的dot运算更好地利用了并行化计算SIMD(Single Instruction Multiple Data)。相比于CPU,GPU更擅长SIMD。所以只要有可能,就避免使用for循环。

4. python中的broadcasting机制:做加减乘除等运算的时候,自动会把标量,或者小矩阵,扩展成和大矩阵一样的大小,然后元素对元素的运算。这个机制有好有坏,好处是方便,坏处是易错。

一些建议:

 1)不推荐使用 a = np.random.randn(5),得到的a是秩为1的数组,a.shape = (5, ),这种数组和行向量、列向量都不一样。

推荐使用 a = np.random.randn(5, 1),这是指明a为列向量,a.shape = (5, 1)。

2)如果不确定矩阵的形状,可以用 assert( a.shape == (5, 1) )。

3)为保险都可以使用 a = a.reshape(5, 1),reshape的计算很快,所以不用担心耗时。

deeplearning.ai 神经网络和深度学习 week2 神经网络基础 听课笔记的更多相关文章

  1. deeplearning.ai 改善深层神经网络 week1 深度学习的实用层面 听课笔记

    1. 应用机器学习是高度依赖迭代尝试的,不要指望一蹴而就,必须不断调参数看结果,根据结果再继续调参数. 2. 数据集分成训练集(training set).验证集(validation/develop ...

  2. deeplearning.ai 神经网络和深度学习 week2 神经网络基础

    1. Logistic回归是用于二分分类的算法. 对于m个样本的训练集,我们可能会习惯于使用for循环一个个处理,但在机器学习中,是把每一个样本写成一个列向量x,然后把m个列向量拼成一个矩阵X.这个矩 ...

  3. deeplearning.ai 人工智能行业大师访谈 林元庆 听课笔记

    1. 读博士之前,林元庆是学光学,他自认为数学基础非常好.在宾夕法尼亚大学上课认识了他的博士导师Dan Lee,转学机器学习.他从头开始学了很多算法,甚至PCA,之前他完全不知道这些,他觉得非常兴奋, ...

  4. Deeplearning.ai课程笔记-神经网络和深度学习

    神经网络和深度学习这一块内容与机器学习课程里Week4+5内容差不多. 这篇笔记记录了Week4+5中没有的内容. 参考笔记:深度学习笔记 神经网络和深度学习 结构化数据:如数据库里的数据 非结构化数 ...

  5. 针对深度学习(神经网络)的AI框架调研

    针对深度学习(神经网络)的AI框架调研 在我们的AI安全引擎中未来会使用深度学习(神经网络),后续将引入AI芯片,因此重点看了下业界AI芯片厂商和对应芯片的AI框架,包括Intel(MKL CPU). ...

  6. (转)神经网络和深度学习简史(第一部分):从感知机到BP算法

    深度|神经网络和深度学习简史(第一部分):从感知机到BP算法 2016-01-23 机器之心 来自Andrey Kurenkov 作者:Andrey Kurenkov 机器之心编译出品 参与:chen ...

  7. [DeeplearningAI笔记]神经网络与深度学习人工智能行业大师访谈

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 吴恩达采访Geoffrey Hinton NG:前几十年,你就已经发明了这么多神经网络和深度学习相关的概念,我其实很好奇,在这么多你发明的东西中 ...

  8. 【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第一周测验【中英】

    [吴恩达课后测验]Course 1 - 神经网络和深度学习 - 第一周测验[中英] 第一周测验 - 深度学习简介 和“AI是新电力”相类似的说法是什么? [  ]AI为我们的家庭和办公室的个人设备供电 ...

  9. Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1

    3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 ...

随机推荐

  1. Asp.Net Web API(四)

    HttpResponseException-----HTTP响应异常 如果Web API控制器抛出一个未捕捉的异常,会发生什么呢?在默认情况下,大多数异常都会转换为一个带有状态码500的内部服务器错误 ...

  2. 【python】局部变量和全局变量

  3. Python学习日记:day4

    列表 li=['alex',[1,2,3] ,'wusir','egon','女神','taibai']#列表 l1 = li[0] print(l1)#alex l2 = li[1] print ( ...

  4. NOI2001 炮兵阵地

    一道非常有意思的题目 很久之前考过 但那时候好像只会打裸搜索(捂脸跑 后来看题解的时候也是没有学状压的所以算是闲置了很久没动的题 昨天看到的时候第一反应是m<=10所以压m然后跑1-n枚举每一行 ...

  5. Windows as a Service(3)——使用SCCM管理Windows10更新

    Hello 小伙伴们,这是这个系列的第三篇文章,我已经和大家分享了有关于Windows 10服务分支以及利用WSUS管理更新的方式,有兴趣的小伙伴们可以参考下面的链接: Windows as a Se ...

  6. Golang丰富的I/O----用N种Hello World展示

    h1 { margin-top: 0.6cm; margin-bottom: 0.58cm; direction: ltr; color: #000000; line-height: 200%; te ...

  7. Redis在APP中的应用

    前言 redis 是内存型数据库,读取data速度远快于mysql和sqlserver,如果将APP中列表信息或者一些常被访问的信息转存至内存上,然后APP通过redis读取内存上的数据,那么APP的 ...

  8. selenium 封装

    周末无聊 在家封装一个pyselenium.可能这些封装大家都会使用,但是我还是根据我自己的习惯去选择性的去封装一些在我工作中用的,这样的话,我就不用去看selenium的api的,我可以根据我自己的 ...

  9. SpringBoot_02_servlet容器配置

    二.参考资料 1.Spring boot 自定义端口 2.Spring Boot的Web配置(九):Tomcat配置和Tomcat替换

  10. php实现MySQL读写分离

    MySQL读写分离有好几种方式 MySQL中间件 MySQL驱动层 代码控制 关于 中间件 和 驱动层的方式这里不做深究  暂且简单介绍下 如何通过PHP代码来控制MySQL读写分离 我们都知道 &q ...