CJOJ 2040 【一本通】分组背包(动态规划)

Description

一个旅行者有一个最多能用V公斤的背包,现在有n件物品,它们的重量分别是W1,W2,...,Wn,它们的价值分别为C1,C2,...,Cn。这些物品被划分为若干组,每组中的物品互相冲突,最多选一件。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

Input

输入有多组数据,每组数据的第一行:三个整数,V(背包容量,V<=200),N(物品数量,N<=30)和T(最大组号,T<=10);

第2..N+1行:每行三个整数Wi,Ci,P,表示每个物品的重量,价值,所属组号。

Output

对于每组数据输出仅一行,一个数,表示最大总价值。

Sample Input

10 6 3

2 1 1

3 3 1

4 8 2

6 9 2

2 8 3

3 9 3

Sample Output

20

Http

CJOJ:http://oj.changjun.com.cn/problem/detail/pid/2040

Source

动态规划

解决思路

原来的背包问题是第i件物品选与不选,而到了分组背包,只需要改成在一个组里面选第几个或是不选这和组。我们令F[i][j]表示前i组选j重量的物品,所以有动态转移方程:

F[i][j]=max(F[i-1][j],F[i-1][j-V[i][k]]+W[i][k]) (k表示选择第i组里的第k件)

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<vector>
#include<algorithm>
using namespace std; const int maxN=40;
const int maxV=300;
const int maxT=15;
const int inf=2147483647; class Item
{
public:
int weight,value;
}; int n,V,T;
vector<Item> C[maxT];
int F[maxT][maxV]={0}; int main()
{
int a,b,c;
cin>>V>>n>>T;
for (int i=1;i<=n;i++)
{
cin>>a>>b>>c;
C[c].push_back((Item){a,b});
}
int Ans=0;
for (int i=1;i<=T;i++)
{
//for (int j=0;j<C[i].size();j++)
//for (int k=0;k<=V;k++)
for (int k=0;k<=V;k++)
{
for (int j=0;j<C[i].size();j++)
{
if (k-C[i][j].weight>=0)
F[i][k]=max(F[i][k],max(F[i-1][k],F[i-1][k-C[i][j].weight]+C[i][j].value));
else
F[i][k]=max(F[i][k],F[i-1][k]);
Ans=max(Ans,F[i][k]);
}
//cout<<F[i][k]<<' ';
}
//cout<<endl;
}
cout<<Ans<<endl;
return 0;
}

CJOJ 2040 【一本通】分组背包(动态规划)的更多相关文章

  1. Codeforces 946 D.Timetable-数据处理+动态规划(分组背包) 处理炸裂

    花了两个晚上来搞这道题. 第一个晚上想思路和写代码,第二个晚上调试. 然而还是菜,一直调不对,我的队友是Debug小能手呀(真的是无敌,哈哈,两个人一会就改好了) D. Timetable   tim ...

  2. B - ACboy needs your help(动态规划,分组背包)

    B - ACboy needs your help Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & ...

  3. BZOJ1296 [SCOI2009]粉刷匠 动态规划 分组背包

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1296 题意概括 有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝 ...

  4. 洛谷 P1273 有线电视网 && caioj 1109 树形动态规划(TreeDP)4:比赛转播(树上分组背包总结)

    从这篇博客往前到二叉苹果树都可以用分组背包做 这依赖性的问题,都可以用于这道题类似的方法来做 表示以i为根的树中取j个节点所能得的最大价值 那么每一个子树可以看成一个组,每个组里面取一个节点,两个节点 ...

  5. 洛谷P1757 通天之分组背包 [2017年4月计划 动态规划06]

    P1757 通天之分组背包 题目背景 直达通天路·小A历险记第二篇 题目描述 自01背包问世之后,小A对此深感兴趣.一天,小A去远游,却发现他的背包不同于01背包,他的物品大致可分为k组,每组中的物品 ...

  6. 树形DP+(分组背包||二叉树,一般树,森林之间的转换)codevs 1378 选课

    codevs 1378 选课 时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond  题目描述 Description 学校实行学分制.每门的必修课都有固定的学分 ...

  7. 基于粒子群算法的分组背包MATLAB实现

    抽空看了一段时间的粒子群算法,这里仅针对其应用于动态规划中的背包问题的情况做下总结归纳,其他应用可以之后想到了再添加. 一:分组背包问题简介 假设有3个组,每组有2个物品,每种物品有3种属性,价值.体 ...

  8. HDU 1712 ACboy needs your help(分组背包)

    题意:给你n的课程组,每个课程组有m个课程,每个课程有一个完成时间与价值.问在m天内每组课程组最多选择一个,这样可以得到的最大价值是多少 题解:分组背包,其实就是每个课程组进行01背包,再在课程组内部 ...

  9. Codeforces Round #383 (Div. 2) D 分组背包

    给出一群女孩的重量和颜值 和她们的朋友关系 现在有一个舞台 ab是朋友 bc是朋友 ac就是朋友 给出最大承重 可以邀请这些女孩来玩 对于每一个朋友团体 全邀请or邀请一个or不邀请 问能邀请的女孩的 ...

随机推荐

  1. 为女票写的计算工作时间的SQL

    排除非工作时间.非工作日后,计算工作时间,代码如下: -- 删除函数 DROP FUNCTION IF EXISTS calculateWorkingTime; set @workStartTime= ...

  2. 多线程编程-- part 5.3 LockSupport

    一.LockSupport的介绍 LockSupport是用来创建锁和其他同步类的基本线程阻塞原语.  LockSupport中的park() 和 unpark() 的作用分别是阻塞线程和解除阻塞线程 ...

  3. Python Tkinter学习(1)——第一个Tkinter程序

    注:本文可转载,转载请注明出处:http://www.cnblogs.com/collectionne/p/6885066.html.格式修改未完成. Tkinter资料 Python Wiki, T ...

  4. 线程(java课堂笔记)

    1.两种方式的差异 2.线程的生命周期 3.线程控制(线程的方法) 4.线程同步 5.线程同步锁 一. 两种方式的差异 A extends Thread :简单 不能再继承其他类了(Java单继承)同 ...

  5. c++ const char *[] or char [][]

    ]={"hello","world"}; ]={"hello"};char (*ch3)[6]= ch1; std::cout<< ...

  6. 初学unslider

    1.关于unslider下载 官方提供的下载页面是http://www.bootcss.com/p/unslider/,但总是进不了下载页面,所以我就查看主页的源码,找到unslider.min.js ...

  7. PHP:win7 ASP.NET环境与PHP(WAMP)环境如何共存

    经验地址:http://jingyan.baidu.com/article/495ba8410f794d38b30ede89.html 笔记本以前安装过asp.net,启用了Windows的IIS服务 ...

  8. js删除 object中的空值

    var data = { a: 'a', b: '' } 删除 b和''的配对, /** * Delete all null (or undefined) properties from an obj ...

  9. git 知识点汇总

    git commit git commit 命令执行后, git 主要执行了三个操作: 为每一个文件生成一个快照 每一个文件其实是真的数据, 所以 git 会把整个文件内容转成二进制, 然后经过压缩直 ...

  10. Thinkphp中的内置标签用法

    Thinkphp中的内置标签有:Volist,Foreach,For,Switch,比较标签,范围判断标签,IF,Present,Empty,Defined,Assign,Define,标签嵌套,im ...