HDU 5008 求第k小子串
本题要求第k小的distinct子串,可以根据height数组,二分出这个第k小子串所在后缀的位置信息。由于题目要求子串起始下标尽可能小。所以再在rank数组中,二分出与当前后缀LCP大于等于所求子串长度的范围。通过RMQ求出这个范围中最小的sa。
#include <iostream>
#include <vector>
#include <algorithm>
#include <string>
#include <string.h>
#include <stdio.h>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <cmath>
#include <ctime>
#include <cassert>
#include <sstream>
using namespace std; const int N=; int MIN(int a,int b){return a<b?a:b;}
int MAX(int a,int b){return a>b?a:b;} int val[N];
struct RMQ {
int dp[N][];
int (*cmp) (int,int);
void setMin(){cmp=MIN;}
void setMax(){cmp=MAX;}
void init(int n,int *val) {
for (int i=; i<=n; i++)
dp[i][]=val[i];
for (int j=; (<<j)<=n; j++) {
int k=<<(j-);
for (int i=; i+k<=n; i++)
dp[i][j]=cmp(dp[i][j-],dp[i+k][j-]);
}
}
int query(int a,int b) {
if (a>b) swap(a,b);
int dis=b-a+;
int k=log((double)dis)/log(2.0);
return cmp(dp[a][k],dp[b-(<<k)+][k]);
}
}rmq;
char s[N];
struct SuffixArray {;
int sa[N];
int t1[N],t2[N],c[N];
int rk[N],height[N];
long long sum[N];
inline int cmp(int *r,int a,int b,int l){
return r[a]==r[b]&&r[a+l]==r[b+l];
}
void calcSA (char *s,int n,int m) {
int i,j,p,*x=t1,*y=t2;
for(i=;i<m;i++)c[i]=;
for(i=;i<n;i++)c[x[i]=s[i]]++;
for(i=;i<m;i++)c[i]+=c[i-];
for(i=n-;i>=;i--)sa[--c[x[i]]]=i;
for(j=;j<=n;j<<=){
p=;
for(i=n-j;i<n;i++)y[p++]=i;
for(i=;i<n;i++)if(sa[i]>=j)y[p++]=sa[i]-j; // 排名从小到大,如果pos比j大,则suffix(sa[i]-j)的第二关键字为p
for(i=;i<m;i++)c[i]=;
for(i=;i<n;i++)c[x[y[i]]]++;
for(i=;i<m;i++)c[i]+=c[i-];
for(i=n-;i>=;i--)sa[--c[x[y[i]]]]=y[i]; // 根据第二关键字从大到小,确定新一轮sa
swap(x,y);
p=;x[sa[]]=;
for(i=;i<n;i++)
x[sa[i]]=cmp(y,sa[i-],sa[i],j)?p-:p++;
if(p>=n)break;
m=p;
}
}
void calcHeight(char *s,int n) {
int i,j,k=;
for(i=;i<=n;i++)rk[sa[i]]=i;
for(i=;i<n;i++){
if(k)k--; // h[i]>=h[i-1]-1
j=sa[rk[i]-]; // suffix(j)排名在suffix(i)前一位
while(s[i+k]==s[j+k])k++; // 暴力计算lcp
height[rk[i]]=k;
}
sum[]=;
for (int i=;i<=n;i++) sum[i]=sum[i-]+n-sa[i]-height[i];
}
int lcp(int a,int b,int len) {
if (a==b) return len-a;
int ra=rk[a],rb=rk[b];
if (ra>rb) swap(ra,rb);
return queryST(ra+,rb);
}
int st[N][];
void initST(int n) {
for (int i=;i<=n;i++)
st[i][]=height[i];
for (int j=;(<<j)<=n;j++) {
int k=<<(j-);
for (int i=; i+k<=n; i++)
st[i][j]=min(st[i][j-],st[i+k][j-]);
}
}
int queryST(int a,int b) {
if (a>b) swap(a,b);
int dis=b-a+;
int k=log((double)dis)/log(2.0);
return min(st[a][k],st[b-(<<k)+][k]);
}
void solve(int &l,int &r,long long k,int n) {
if (k<||k>sum[n]) {
l=;r=;
return;
}
int t=lower_bound(sum,sum+n+,k)-sum;
assert(t>=&&t<=n);
long long now=sum[t-];
int need=k-now;
l=sa[t],r=sa[t]+height[t]+need-;
int len=r-l+;
int le=t,ri=n,ret=l;
while (le<=ri) {
int mid=(le+ri)/;
if (lcp(sa[mid],l,n)>=len) {
le=mid+;
ret=mid;
} else ri=mid-;
}
l=rmq.query(t,ret);
l++;
r=l+len-;
}
}suf; int main () {
while (scanf("%s",s)!=EOF) {
int n=strlen(s);
suf.calcSA(s,n+,);
suf.calcHeight(s,n);
suf.initST(n);
rmq.setMin();
rmq.init(n,suf.sa);
int Q;
scanf("%d",&Q);
int l=,r=; //int cnt=0;
while (Q--) {
long long k;
scanf("%I64d",&k);
k^=(l^r);
k++;
//k=++cnt;
suf.solve(l,r,k,n);
printf("%d %d\n",l,r);
}
}
return ;
}
HDU 5008 求第k小子串的更多相关文章
- SPOJ SUBLEX 求第k小子串
题目大意: 对于一个给定字符串,找到其所有不同的子串中排第k小的子串 先构建后缀自动机,然后我们可以将整个后缀自动机看做是一个DAG图,那么我们先进行拓扑排序得到 *b[N] 对于每个节点记录一个sc ...
- BZOJ 3998: [TJOI2015]弦论 后缀自动机 后缀自动机求第k小子串
http://www.lydsy.com/JudgeOnline/problem.php?id=3998 后缀自动机应用的一个模板?需要对len进行一个排序之后再统计每个出现的数量,维护的是以该字符串 ...
- hdu 4217 Data Structure? 树状数组求第K小
Data Structure? Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
- 「BZOJ3998」[TJOI2015] 弦论(第K小子串)
https://www.lydsy.com/JudgeOnline/problem.php?id=3998 Description 对于一个给定长度为N的字符串,求它的第K小子串是什么. Input ...
- [TJOI2015]弦论(第k小子串)
题意: 对于一个给定的长度为n的字符串,求出它的第k小子串. 有参数t,t为0则表示不同位置的相同子串算作一个,t为1则表示不同位置的相同子串算作多个. 题解: 首先,因为t的原因,后缀数组较难实现, ...
- 树状数组求第k小的元素
int find_kth(int k) { int ans = 0,cnt = 0; for (int i = 20;i >= 0;i--) //这里的20适当的取值,与MAX_VAL有关,一般 ...
- 算法导论学习之线性时间求第k小元素+堆思想求前k大元素
对于曾经,假设要我求第k小元素.或者是求前k大元素,我可能会将元素先排序,然后就直接求出来了,可是如今有了更好的思路. 一.线性时间内求第k小元素 这个算法又是一个基于分治思想的算法. 其详细的分治思 ...
- 求第k小的数
题目链接:第k个数 题意:求n个数中第k小的数 题解: //由快速排序算法演变而来的快速选择算法 #include<iostream> using namespace std; const ...
- *HDU2852 树状数组(求第K小的数)
KiKi's K-Number Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
随机推荐
- JVM学习之类加载
该文使用Hotspot JDK1.7 一.类加载器 1.什么是类加载器 类的加载指的是将类的.class文件中的二进制数据读入到内存中,将其放在运行时数据区的方法区内,然后在堆区创建一个java ...
- ASP提取字段中的图片地址
Function RegImg(TheStr) Dim RegEx Set RegEx = New RegExp '建立正则表达对象. RegEx.IgnoreCase =T ...
- Java 集合的理解(持续更新......)
一.集合的由来 通常,我们的程序需要根据程序运行时才知道创建多少个对象.但若非程序运行,程序开发阶段,我们根本不知道到底需要多少个数量的对象,甚至不知道它的准确类型.为了满足这些常规的编程需要,我们要 ...
- ubuntu firefox上看视频,安装flash啊
这是针对于直接硬盘安装的linux系统: u盘安装选择了安装第三方软件的话就不会存在这种问题 flash的安装其实也不是很难的,有点耐心就ok了 总结一下: 1:肯定是下载最新版的flash啦,注意看 ...
- mybatis基础学习4---懒加载和缓存
1:懒加载 1)在主配置文件设置(要放在配置文件最前面) <!-- 延迟加载配置,两个都必须同时有 --> <settings> <!-- lazyLoadingEnab ...
- 带金属光泽的模型shader的实现
最近捣鼓了一下金属光泽的shader的实现,在一些高模展示的时候或者模型的金属部分的表现的时候,我们需要给模型添加一些金属光泽,表现出一个模型某些金属装备上有一定的反光.今天我主要写一种基于贴图实现的 ...
- 原生ajax 和jquery ajax 个人总结
AJAX:即“Asynchronous Javascript And XML”(异步JavaScript和XML),是指一种创建交互式网页应用的网页开发技术. 通过在后台 ...
- rancher api key
rancher将docker容器的界面化做的很好了,但是我们有时间需要在别的地方查看容器的一些信息,怎么办呢? rancher自己提供的有api 点击api查看 我们能够查看到该容器的一些信息,实际上 ...
- 【Ubuntu】您没有查看“sf_VirtualDisk”的内容所需的权限。
原文链接:http://www.crifan.com/can_not_access_share_folder_in_ubuntu_virtualbox/ [问题] 之前已经搞定可以自动共享文件夹了: ...
- 封装Echarts
项目中需要对数据进行图形展示,例如展示柱状图.饼状图等.这类的前端展示脚本很多,常见的是HighCharts和Echarts.HighCharts是基于svg技术的,而echarts基于Echarts ...