数据挖掘 ID3
本文讲的是数据挖掘中的ID3,这个有很多人做了,我也没有说什么改善,只是要考试,用我考试记录的来写,具有很大主观性,如果看到有觉得不对或感觉不好,请关掉浏览器或和我说,请不要生气或发不良的言论。
决策树使用属性划分
那么简单的,我有一只猫,不是吃的东西他就回去吃,吃的东西中,不给猫吃的,他就会吃。那么我们拿出一个东西,他就会根据构建的判断
ID3算法是由Quinlan首先提出的,该算法是以信息论为基础,以信息熵和信息增益为衡量标准,从而实现对数据的归纳分类。
ID3就是判断那个属性作为节点,例如上面说的,我们有属性 吃的、给猫吃的,两个属性,ID3判断那个属性作为第一个节点,选取完了第一个节点吃的,就从剩下的属性选取。
信息熵
ID3判断是用信息熵,信息熵就是主要是指信息的混乱程度,变量的不确定性越大,熵的值也就越大,这是香农提出,熵的公式可以表示为:
其中 ,是类别在S出现概率。
信息不确定大,熵越大,所以把它分离作为节点得到信息多,如果一个熵为0,那么就不用分裂,表示确定,例如看到水100度,得到结果他沸在常温下
信息增益
信息增益(Information gain) 指的是划分前后熵的变化,可以用下面的公式表示:
其中,A表示样本的属性,是属性A所有的取值集合。V是A其中一个属性值,是S中A的值为V样例的集合。
那么看到这觉得不知道我在说什么,简答例子
我们先用别的大神例子,假如还是我们那个用某人是否网球天气
|
Day |
Outlook |
Temperature |
Humidity |
Wind |
PlayTennis |
|
D1 |
Sunny |
Hot |
High |
Weak |
No |
|
D2 |
Sunny |
Hot |
High |
Strong |
No |
|
D3 |
Overcast |
Hot |
High |
Weak |
Yes |
|
D4 |
Rain |
Mild |
High |
Weak |
Yes |
|
D5 |
Rain |
Cool |
Normal |
Weak |
Yes |
|
D6 |
Rain |
Cool |
Normal |
Strong |
No |
|
D7 |
Overcast |
Cool |
Normal |
Strong |
Yes |
|
D8 |
Sunny |
Mild |
High |
Weak |
No |
|
D9 |
Sunny |
Cool |
Normal |
Weak |
Yes |
|
D10 |
Rain |
Mild |
Normal |
Weak |
Yes |
|
D11 |
Sunny |
Mild |
Normal |
Strong |
Yes |
|
D12 |
Overcast |
Mild |
High |
Strong |
Yes |
|
D13 |
Overcast |
Hot |
Normal |
Weak |
Yes |
|
D14 |
Rain |
Mild |
High |
Strong |
No |
未知 Outlook=sunny, Temperature=cool,Humidity=high,Wind=strong
那么我们根据现在数据
计算信息熵
我们yes存在9,no存在4,根据
对每个属性计算,OUTLOOK属性中,有3个取值:Sunny、Overcast和Rainy,样本分布情况如下:
类别为Yes时,Sunny有2个样本;类别为No时,Sunny有3个样本。
类别为Yes时,Overcast有4个样本;类别为No时,Overcast有0个样本。
类别为Yes时,Rainy有3个样本;类别为No时,Rainy有2个样本。
接着对所有属性计算
信息增益
选出最大OutLook,然后把OutLook做节点,依靠不用属性分为多个集合,再对每个集合计算信息增益得到节点,直到不能再分。
我们得到决策树就可以把我们要分的属性依靠决策树来分,这个方法已经很老,现在比较少用
参考:http://shiyanjun.cn/archives/417.html

本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。欢迎转载、使用、重新发布,但务必保留文章署名林德熙(包含链接:http://blog.csdn.net/lindexi_gd ),不得用于商业目的,基于本文修改后的作品务必以相同的许可发布。如有任何疑问,请与我联系。
数据挖掘 ID3的更多相关文章
- ID3和C4.5分类决策树算法 - 数据挖掘算法(7)
(2017-05-18 银河统计) 决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来判断其可行性的决策分析方法,是直观运用概率分析的一种图解法.由于这种决策分支画 ...
- 数据挖掘之决策树ID3算法(C#实现)
决策树是一种非常经典的分类器,它的作用原理有点类似于我们玩的猜谜游戏.比如猜一个动物: 问:这个动物是陆生动物吗? 答:是的. 问:这个动物有鳃吗? 答:没有. 这样的两个问题顺序就有些颠倒,因为一般 ...
- 数据挖掘 决策树算法 ID3 通俗演绎
决策树是对数据进行分类,以此达到预測的目的.该决策树方法先依据训练集数据形成决策树,假设该树不能对全部对象给出正确的分类,那么选择一些例外添�到训练集数据中,反复该过程一直到形成正确的决策集.决策树代 ...
- 数据挖掘中ID3算法实现zz
id3 function D = ID3(train_features, train_targets, params, region) % Classify using Quinlan's ID3 a ...
- 跟我一起数据挖掘(23)——C4.5
C4.5简介 C4.5是一系列用在机器学习和数据挖掘的分类问题中的算法.它的目标是监督学习:给定一个数据集,其中的每一个元组都能用一组属性值来描述,每一个元组属于一个互斥的类别中的某一类.C4.5的目 ...
- 【十大经典数据挖掘算法】C4.5
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 决策树模型与学习 决策树(de ...
- 《BI那点儿事》数据挖掘的主要方法
一.回归分析目的:设法找出变量间的依存(数量)关系, 用函数关系式表达出来.所谓回归分析法,是在掌握大量观察数据的基础上,利用数理统计方法建立因变量与自变量之间的回归关系函数表达式(称回归方程式).回 ...
- 决策树-预测隐形眼镜类型 (ID3算法,C4.5算法,CART算法,GINI指数,剪枝,随机森林)
1. 1.问题的引入 2.一个实例 3.基本概念 4.ID3 5.C4.5 6.CART 7.随机森林 2. 我们应该设计什么的算法,使得计算机对贷款申请人员的申请信息自动进行分类,以决定能否贷款? ...
- 机器学习&&数据挖掘之一:决策树基础认识
决策树入门篇 前言:分类是数据挖掘中的主要分析手段,其任务就是对数据集进行学习并构造一个拥有预测功能的分类模型,用于预测未知样本的类标号,把类标号未知的样本按照某一规则映射到预先给定的类标号中. 分类 ...
随机推荐
- 201521123009 《Java程序设计》第8周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结集合与泛型相关内容. 2. 书面作业 本次作业题集集合 Q1:List中指定元素的删除(题目4-1) 1.1 实验总结 Scanne ...
- 201521123066 《Java程序设计》 第六周学习总结
1. 本周学习总结 1.1 面向对象学习暂告一段落,请使用思维导图,以封装.继承.多态为核心概念画一张思维导图,对面向对象思想进行一个总结. 1.clone方法 1.1 Object对象中的clone ...
- 201521123085 《Java程序设计》第5周学习总结
1. 本周学习总结 1.1 尝试使用思维导图总结有关多态与接口的知识点. 2. 书面作业 1. 代码阅读:Child压缩包内源代码 1.1 com.parent包中Child.java文件能否编译通过 ...
- 201521123110 《JAVA程序设计》第3周学习总结
1.本章学习总结 ` ` 2.书面作业 1.代码阅读 public class Test1 { private int i = 1;//这行不能修改 private static int j = 2; ...
- 201521123014 《Java程序设计》第10周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常与多线程相关内容. 1.关于异常上次作业已经概括得差不多了,创建自己的异常时可以使用Java类库中已经定义好的类,也可自定义异常 ...
- mysql5.6.24的安装与简单使用
1, 下载绿色版Mysql5.6.24 http://dlsw.baidu.com/sw-search-sp/soft/ea/12585/mysql-5.6.24-win32.1432006610.z ...
- 代码的鲁棒性:链表中倒数第k个结点
输入一个链表,输出该链表中倒数第k个结点. 代码思路如下:两个指针,先让第一个指针和第二个指针都指向头结点,然后再让第一个指正走(k-1)步,到达第k个节点.然后两个指针同时往后移动,当第一个结点到达 ...
- Apache2.4 + Tomcat7 负载均衡配置
一.配置tomcat 多启动 1.下载免安装版 tomcat7 http://mirror.bit.edu.cn/apache/tomcat/tomcat-7/v7.0.81/bin/apache-t ...
- String类的替换方法(9)
1:String replace(char old,char new) 2: String replace(String old,String new) 3: trim();//去除字符串空格 ...
- 内核对象 windows操作系统
问题: 什么是内核对象? 答:内核对象实际上时由内核分配的一块内存,而且只能由内核来访问.它时一个数据结构,成员包含有关于该对象的信息.一些成员对于所有对象类型都是一样的,比如对象名称.安全描述.使用 ...