python异步编程之asyncio
python异步编程之asyncio
前言:python由于GIL(全局锁)的存在,不能发挥多核的优势,其性能一直饱受诟病。然而在IO密集型的网络编程里,异步处理比同步处理能提升成百上千倍的效率,弥补了python性能方面的短板,如最新的微服务框架japronto,resquests per second可达百万级。
python还有一个优势是库(第三方库)极为丰富,运用十分方便。asyncio是python3.4版本引入到标准库,python2x没有加这个库,毕竟python3x才是未来啊,哈哈!python3.5又加入了async/await特性。
在学习asyncio之前,我们先来理清楚同步/异步的概念:
·同步是指完成事务的逻辑,先执行第一个事务,如果阻塞了,会一直等待,直到这个事务完成,再执行第二个事务,顺序执行。。。
·异步是和同步相对的,异步是指在处理调用这个事务的之后,不会等待这个事务的处理结果,直接处理第二个事务去了,通过状态、通知、回调来通知调用者处理结果。
一、asyncio
下面通过举例来对比同步代码和异步代码编写方面的差异,其次看下两者性能上的差距,我们使用sleep(1)模拟耗时1秒的io操作。
·同步代码:

import time def hello():
time.sleep(1) def run():
for i in range(5):
hello()
print('Hello World:%s' % time.time()) # 任何伟大的代码都是从Hello World 开始的!
if __name__ == '__main__':
run()

输出:(间隔约是1s)
Hello World:1527595175.4728756
Hello World:1527595176.473001
Hello World:1527595177.473494
Hello World:1527595178.4739306
Hello World:1527595179.474482
·异步代码:
import time
import asyncio # 定义异步函数
async def hello():
asyncio.sleep(1)
print('Hello World:%s' % time.time()) def run():
for i in range(5):
loop.run_until_complete(hello()) loop = asyncio.get_event_loop()
if __name__ =='__main__':
run()
输出:
Hello World:1527595104.8338501
Hello World:1527595104.8338501
Hello World:1527595104.8338501
Hello World:1527595104.8338501
Hello World:1527595104.8338501
async def 用来定义异步函数,其内部有异步操作。每个线程有一个事件循环,主线程调用asyncio.get_event_loop()时会创建事件循环,你需要把异步的任务丢给这个循环的run_until_complete()方法,事件循环会安排协同程序的执行。
二、aiohttp
如果需要并发http请求怎么办呢,通常是用requests,但requests是同步的库,如果想异步的话需要引入aiohttp。这里引入一个类,from aiohttp import ClientSession,首先要建立一个session对象,然后用session对象去打开网页。session可以进行多项操作,比如post, get, put, head等。
基本用法:
async with ClientSession() as session:
async with session.get(url) as response:
aiohttp异步实现的例子:
import asyncio
from aiohttp import ClientSession tasks = []
url = "https://www.baidu.com/{}"
async def hello(url):
async with ClientSession() as session:
async with session.get(url) as response:
response = await response.read()
print(response) if __name__ == '__main__':
loop = asyncio.get_event_loop()
loop.run_until_complete(hello(url))
首先async def 关键字定义了这是个异步函数,await 关键字加在需要等待的操作前面,response.read()等待request响应,是个耗IO操作。然后使用ClientSession类发起http请求。
多链接异步访问
如果我们需要请求多个URL该怎么办呢,同步的做法访问多个URL只需要加个for循环就可以了。但异步的实现方式并没那么容易,在之前的基础上需要将hello()包装在asyncio的Future对象中,然后将Future对象列表作为任务传递给事件循环。
import time
import asyncio
from aiohttp import ClientSession tasks = []
url = "https://www.baidu.com/{}"
async def hello(url):
async with ClientSession() as session:
async with session.get(url) as response:
response = await response.read()
# print(response)
print('Hello World:%s' % time.time()) def run():
for i in range(5):
task = asyncio.ensure_future(hello(url.format(i)))
tasks.append(task) if __name__ == '__main__':
loop = asyncio.get_event_loop()
run()
loop.run_until_complete(asyncio.wait(tasks))
输出:
Hello World:1527754874.8915546
Hello World:1527754874.899039
Hello World:1527754874.90004
Hello World:1527754874.9095392
Hello World:1527754874.9190395
收集http响应
好了,上面介绍了访问不同链接的异步实现方式,但是我们只是发出了请求,如果要把响应一一收集到一个列表中,最后保存到本地或者打印出来要怎么实现呢,可通过asyncio.gather(*tasks)将响应全部收集起来,具体通过下面实例来演示。
import time
import asyncio
from aiohttp import ClientSession tasks = []
url = "https://www.baidu.com/{}"
async def hello(url):
async with ClientSession() as session:
async with session.get(url) as response:
# print(response)
print('Hello World:%s' % time.time())
return await response.read() def run():
for i in range(5):
task = asyncio.ensure_future(hello(url.format(i)))
tasks.append(task)
result = loop.run_until_complete(asyncio.gather(*tasks))
print(result) if __name__ == '__main__':
loop = asyncio.get_event_loop()
run()
输出:
Hello World:1527765369.0785167
Hello World:1527765369.0845182
Hello World:1527765369.0910277
Hello World:1527765369.0920424
Hello World:1527765369.097017
[b'<!DOCTYPE html>\r\n<!--STATUS OK-->\r\n<html>\r\n<head>\r\n......
异常解决
假如你的并发达到2000个,程序会报错:ValueError: too many file descriptors in select()。报错的原因字面上看是 Python 调取的 select 对打开的文件有最大数量的限制,这个其实是操作系统的限制,linux打开文件的最大数默认是1024,windows默认是509,超过了这个值,程序就开始报错。这里我们有三种方法解决这个问题:
1.限制并发数量。(一次不要塞那么多任务,或者限制最大并发数量)
2.使用回调的方式。
3.修改操作系统打开文件数的最大限制,在系统里有个配置文件可以修改默认值,具体步骤不再说明了。
不修改系统默认配置的话,个人推荐限制并发数的方法,设置并发数为500,处理速度更快。
#coding:utf-8
import time,asyncio,aiohttp url = 'https://www.baidu.com/'
async def hello(url,semaphore):
async with semaphore:
async with aiohttp.ClientSession() as session:
async with session.get(url) as response:
return await response.read() async def run():
semaphore = asyncio.Semaphore(500) # 限制并发量为500
to_get = [hello(url.format(),semaphore) for _ in range(1000)] #总共1000任务
await asyncio.wait(to_get) if __name__ == '__main__':
# now=lambda :time.time()
loop = asyncio.get_event_loop()
loop.run_until_complete(run())
loop.close()
python异步编程之asyncio的更多相关文章
- python异步编程之asyncio(百万并发)
前言:python由于GIL(全局锁)的存在,不能发挥多核的优势,其性能一直饱受诟病.然而在IO密集型的网络编程里,异步处理比同步处理能提升成百上千倍的效率,弥补了python性能方面的短板,如最 ...
- python并发编程之asyncio协程(三)
协程实现了在单线程下的并发,每个协程共享线程的几乎所有的资源,除了协程自己私有的上下文栈:协程的切换属于程序级别的切换,对于操作系统来说是无感知的,因此切换速度更快.开销更小.效率更高,在有多IO操作 ...
- 异步编程之asyncio简单介绍
引言: python由于GIL(全局锁)的存在,不能发挥多核的优势,其性能一直饱受诟病.然而在IO密集型的网络编程里,异步处理比同步处理能提升成百上千倍的效率,弥补了python性能方面的短板. as ...
- Python核心技术与实战——十八|Python并发编程之Asyncio
我们在上一章学习了Python并发编程的一种实现方法——多线程.今天,我们趁热打铁,看看Python并发编程的另一种实现方式——Asyncio.和前面协程的那章不太一样,这节课我们更加注重原理的理解. ...
- python并发编程之gevent协程(四)
协程的含义就不再提,在py2和py3的早期版本中,python协程的主流实现方法是使用gevent模块.由于协程对于操作系统是无感知的,所以其切换需要程序员自己去完成. 系列文章 python并发编程 ...
- python并发编程之multiprocessing进程(二)
python的multiprocessing模块是用来创建多进程的,下面对multiprocessing总结一下使用记录. 系列文章 python并发编程之threading线程(一) python并 ...
- python并发编程之Queue线程、进程、协程通信(五)
单线程.多线程之间.进程之间.协程之间很多时候需要协同完成工作,这个时候它们需要进行通讯.或者说为了解耦,普遍采用Queue,生产消费模式. 系列文章 python并发编程之threading线程(一 ...
- python并发编程之threading线程(一)
进程是系统进行资源分配最小单元,线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.进程在执行过程中拥有独立的内存单元,而多个线程共享内存等资源. 系列文章 py ...
- Python 多进程编程之multiprocessing--Pool
Python 多进程编程之multiprocessing--Pool ----当需要创建的子进程数量不多的时候,可以直接利用multiprocessing 中的Process 动态生成多个进程, -- ...
随机推荐
- 1028 List Sorting
Excel can sort records according to any column. Now you are supposed to imitate this function. Input ...
- 【目录】python全栈工程师
第一阶段:Python 语言核心编程1. Python核心 -- 2048 游戏核心算法2. 面向对象 -- 天龙八部游戏技能系统3. Python高级 -- 集成操作框架项目:2048游 ...
- Laravel路由中不固定数量的参数如何实现?
前言 laravel是个好框架,我也在学习和使用,并且在公司里推广,最近在读 Laravel 源码的时候,发现了一个段特别有趣的代码,大家请看: ... 这三个点是做什么用的呢?我查了 PHP 的手册 ...
- Windows域的管理
目录 域的管理 默认容器 组织单位的管理 添加额外域控制器 卸载域控服务器 组策略应用 域的管理 域用户账户的管理 创建域用户账户 配置域用户账户属性 验证用户的身份 授权或拒绝对域资源的访问 组的管 ...
- unresolved external symbol _WinMain@16
vc下,新建一个win32项目,就写了个main函数,打印hello ,出现了如标题所述的错误 原因: 你建立了一个WINDOWS应用程序,可是你却在入口函数的时候使用main而不是WinMain 解 ...
- 指定的服务已标记为删除 寒江孤钓<<windows 内核安全编程>> 学习笔记
运行cmd:"sc delete first" 删除我们的服务之后, 再次创建这个服务的时候出现 "指定的服务已标记为删除"的错误, 原因是我们删除服务之前没有 ...
- XCTF-FlatScience
FlatScience 题目描述 啥描述也没有 解题过程 页面有好多链接,除了论文pdf之外,还有子目录下的index.html, 比如:/1/index.html,/1/3/index.html 扫 ...
- Spring Framework自动装配setAutowireMode和Mybatis案例的源码探究
由前文可得知, Spring Framework的自动装配有两种方式:xml配置和注解配置: 自动装配的类型有: (1)xml配置中的byType根据类型查找(@Autowired注解是默认根据类型查 ...
- 【DB宝51】CentOS7修改网卡名称
目录 1.修改/etc/default/grub文件 2.修改/etc/udev/rules.d/70-persistent-net.rules文件 3.修改网卡配置文件 4.重启服务器 需求:原来的 ...
- Mybatis学习之自定义持久层框架(七) 自定义持久层框架优化
前言 接上文,这里只是出于强迫症,凭借着半年前的笔记来把之前没写完的文章写完,这里是最后一篇了. 前面自定义的持久层框架存在的问题 Dao层若使用实现类,会存在代码重复,整个操作的过程模版重复(加载配 ...