目录

Locatello F., Bauer S., Lucic M., R"{a}tsch G., Gelly S. Sch"{o}lkopf and Bachem Olivier. Challenging common assumptions in the unsupervised learning of disentangled representations. In International Conference on Machine Leaning (ICML), 2018.

解耦表示学习(disentangled representations)通常假设图片有独立的几个因素决定, 即:

\[p(x|z) , p(z) = \prod_{i=1}^d p(z_i).
\]

本文对这个假设提出质疑.

主要内容

VAE 首先通过encoder 将\(x\)映射为隐变量\(z\), 再通过隐变量\(z\)恢复出\(x\), 其中赋予先验\(p(z)\)常常为标准正态分布, 并且最大化ELBO的同时要最小化:

\[\mathrm{KL} (q_{\phi}(z|x) \| p(z)),
\]

这表示我们希望所提取的隐变量\(z\)的各分量是相互独立. 形象地说, 我们改变\(z_i\)就有图片相应的元素发生改变而其它元素不变. 作者认为这种假设简单而美好, 但是在无监督的模式下, 该假设是不可能成立的.

实际上, 假设先验分布的确如此\(p(z) = \prod_{i}^d p(z_i)\), 则一定存在一个双射\(f: \mathrm{supp}(z) \rightarrow \mathrm{supp}(z)\), 是的\(\frac{\partial{f_i(z)}}{\partial z_j}\not = 0, \mathrm{a.e.}, \forall i, j\), 且\(z, f(z)\)同分布, 即

\[P(z \le u) = P(f(z) \le u),
\]

又因为\(f\)是一个双射, 故

\[p(x|z) = p(x|f(z)),
\]

进一步有

\[P(x) = \int p(x|z)p(z) \mathrm{d}z = \int p(x|f(z))p(f(z)) \mathrm{d}f(z).
\]

故边缘分布是一致的, 这意味着, 我们除了\(p(z)\), 还有\(p(f(z))\)同样可以到处我们的观测数据\(P(x)\), 反之, 没有额外的信息(即在无监督条件下)我们无法确定所拟合的分布是\(p(z)\)还是\(p(f(z))\).

倘若是后者, 我们改变隐变量的某一个维度\(f_i\), 由于偏导数均不为0, 则几乎所有的\(z\)都改变了, 也就是真正的控制元素都会发生改变, 这和我们的解耦表示学习的初衷产生了背离. 所以结论就是在无监督条件下, 想要解耦表示是几乎不可能的.

注: 上面的\(f\)的构造不是唯一的;

注: 上面的证明用到了和顺序统计量一样的有趣的玩意.

作者做了很多很多实验, 个人觉得最能体现这一点就是, 所有这些强调解耦表示的VAE都对参数初始化和超参数选择异常敏感.

Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations的更多相关文章

  1. 《Domain Agnostic Learning with Disentangled Representations》ICML 2019

    这篇文章是ICML 2019上一篇做域适应的文章,无监督域适应研究的问题是如何把源域上训练的模型结合无lable的目标域数据使得该模型在目标域上有良好的表现.之前的研究都有个假设,就是数据来自哪个域是 ...

  2. 【ML】ICML2015_Unsupervised Learning of Video Representations using LSTMs

    Unsupervised Learning of Video Representations using LSTMs Note here: it's a learning notes on new L ...

  3. 【CV】ICCV2015_Unsupervised Learning of Visual Representations using Videos

    Unsupervised Learning of Visual Representations using Videos Note here: it's a learning note on Prof ...

  4. Unsupervised Learning and Text Mining of Emotion Terms Using R

    Unsupervised learning refers to data science approaches that involve learning without a prior knowle ...

  5. Machine Learning Algorithms Study Notes(4)—无监督学习(unsupervised learning)

    1    Unsupervised Learning 1.1    k-means clustering algorithm 1.1.1    算法思想 1.1.2    k-means的不足之处 1 ...

  6. Unsupervised Learning: Use Cases

    Unsupervised Learning: Use Cases Contents Visualization K-Means Clustering Transfer Learning K-Neare ...

  7. Supervised Learning and Unsupervised Learning

    Supervised Learning In supervised learning, we are given a data set and already know what our correc ...

  8. Unsupervised learning无监督学习

    Unsupervised learning allows us to approach problems with little or no idea what our results should ...

  9. PredNet --- Deep Predictive coding networks for video prediction and unsupervised learning --- 论文笔记

    PredNet --- Deep Predictive coding networks for video prediction and unsupervised learning   ICLR 20 ...

随机推荐

  1. SimpleNVR如何把安防监控画面推流到微信公众号直播

    背景需求 进入移动互联网时代以来,微信已成为许多企业除官网以外必备的宣传渠道,当3.2亿直播用户与九亿微信用户的势能增加,在微信上开启直播已成为越来越多企业的不二选择. 需求分析 微信公众号作为平台来 ...

  2. day6 基本数据类型及内置方法

    day6 基本数据类型及内置方法 一.10进制转其他进制 1. 十进制转二进制 print(bin(11)) #0b1011 2. 十进制转八进制 print(hex(11)) #0o13 3. 十进 ...

  3. Maven配置大全

    maven项目打jar包(带依赖) <build> <plugins> <plugin> <artifactId>maven-assembly-plug ...

  4. JVM堆空间结构及常用的jvm内存分析命令和工具

    jdk8之前的运行时数据区域 程序计数器 是一块较小的内存空间,它可以看做是当前线程所执行的字节码的行号指示器.每个线程都有一个独立的程序计数器,这类内存区域为"线程私有",此内存 ...

  5. C# 温故知新 第一篇 C# 与 .net 的关系

    C# 与.net 的关系很多初学者或者未从事过.net 研发的编程人员 都不是很清楚,认为 C# 与.net 是一回事. 我们经常说java开发,C++开发,指的是两种开发语言:但是 经常看到 .ne ...

  6. 使用plantuml,业务交接就是这么简单

    使用plantuml,业务交接就是这么简单 你好,我是轩脉刃. 最近交接了一个业务,原本还是有挺复杂的业务逻辑的,但发现交接过来的项目大有文章,在项目代码中有一个docs文件夹,里面躺着若干个 pum ...

  7. 记ByteCTF中的Node题

    记ByteCTF中的Node题 我总觉得字节是跟Node过不去了,初赛和决赛都整了个Node题目,当然PHP.Java都是必不可少的,只是我觉得Node类型的比较少见,所以感觉挺新鲜的. Nothin ...

  8. <转>单机版搭建Hadoop环境

    安装过程: 一.安装Linux操作系统 二.在Ubuntu下创建hadoop用户组和用户 三.在Ubuntu下安装JDK 四.修改机器名 五.安装ssh服务 六.建立ssh无密码登录本机 七.安装ha ...

  9. mit6.830-lab2-常见算子和 volcano 执行模型

    一.实验概览 github : https://github.com/CreatorsStack/CreatorDB 这个实验需要完成的内容有: 实现过滤.连接运算符,这些类都是继承与OpIterat ...

  10. Indirect函数(Excel函数集团)

    此处文章均为本妖原创,供下载.学习.探讨! 文章下载源是Office365国内版1Driver,如有链接问题请联系我. 请勿用于商业!谢谢 下载地址:https://officecommunity-m ...