题目传送门

Description

\(n\le 100\)

Solution

Problem 1

不难看出,答案就是:

\[1+\sum_{i=1}^{n-1} 2/(i+1)
\]

Problem 2

这个问真的很仙。

可(bu)以(neng) 想到,我们可以设 \(f_{i,j}\) 表示有 \(i\) 个叶子时深度 \(\ge j\) 的概率,可以得到转移式:

\[f_{i,j}=\frac{1}{i-1}\sum_{k=1}^{i-1} (f_{k,j-1}+f_{i-k,j-1}-f_{k,j-1}\times f_{i-k,j-1})
\]

可以直接除以 \(i-1\) 是因为可以证明把两颗子树合并,只要总大小相同,那么方案就相同。这里就不赘述了。

然后我们就可以得到答案就是:

\[\sum_{i=1}^{n-1} (f_{n,i}-f_{n,i+1})\times i
\]

Code

#include <bits/stdc++.h>
using namespace std; #define Int register int
#define MAXN 105 template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');} double f[MAXN][MAXN]; signed main(){
int q,up;read (q,up);
if (q == 1){
double d = 1;
for (Int n = 2;n < up;++ n) d += 2.0 / (n + 1);
printf ("%.6f\n",d);
}
else{
for (Int i = 1;i <= up;++ i) f[i][0] = 1;
for (Int i = 2;i <= up;++ i)
for (Int j = 1;j < i;++ j){
for (Int k = 1;k < i;++ k) f[i][j] += f[k][j - 1] + f[i - k][j - 1] - f[k][j - 1] * f[i - k][j - 1];
f[i][j] /= (i - 1);
}
double d = 0;
for (Int i = 1;i < up;++ i) d += (f[up][i] - f[up][i + 1]) * i;
printf ("%.6f\n",d);
}
return 0;
}

题解 [SHOI2012]随机树的更多相关文章

  1. P3830 [SHOI2012]随机树 题解

    P3830 随机树 坑题,别人的题解我看了一个下午没一个看得懂的,我还是太弱了. 题目链接 P3830 [SHOI2012]随机树 题目描述 输入输出格式 输入格式: 输入仅有一行,包含两个正整数 q ...

  2. bzoj2830: [Shoi2012]随机树

    题目链接 bzoj2830: [Shoi2012]随机树 题解 q1好做 设f[n]为扩展n次后的平均深度 那么\(f[n] = \frac{f[n - 1] * (n - 1) + f[n - 1] ...

  3. [SHOI2012]随机树

    [SHOI2012]随机树 题目大意( 网址戳我! ) 随机树是一颗完全二叉树,初始状态下只有一个节点. 随机树的生成如下:每次随机选择一个叶子节点,扩展出两个儿子. 现在给定一个正整数\(n\)(\ ...

  4. P3830 [SHOI2012]随机树

    P3830 [SHOI2012]随机树 链接 分析: 第一问:f[i]表示有i个叶子结点的时候的平均深度,$f[i] = \frac{f[i - 1] + 2 + f[i - 1] * (i - 1) ...

  5. luogu P3830 [SHOI2012]随机树 期望 dp

    LINK:随机树 非常经典的期望dp. 考虑第一问:设f[i]表示前i个叶子节点的期望平均深度. 因为期望具有线性性 所以可以由每个叶子节点的期望平均深度得到总体的. \(f[i]=(f[i-1]\c ...

  6. BZOJ2830 & 洛谷3830:[SHOI2012]随机树——题解

    https://www.luogu.org/problemnew/show/P3830#sub   <-题面看这里~ https://www.lydsy.com/JudgeOnline/prob ...

  7. luogu3830 [SHOI2012]随机树

    传送门:洛谷 题目大意:对于一个只有一个节点的二叉树,一次操作随机将这棵树的叶节点的下方增加两个节点.$n-1$次操作后变为$n$个叶节点的二叉树.求:(1)叶节点平均深度的期望值(2)树深度的数学期 ...

  8. 洛谷P3830 [SHOI2012]随机树(期望dp)

    题面 luogu 题解 第一问: 设\(f[i]\)表示\(i\)步操作后,平均深度期望 \(f[i] = \frac {f[i - 1] * (i - 1)+f[i-1]+2}{i}=f[i-1]+ ...

  9. 【[SHOI2012]随机树】

    感觉第一问就非常神仙,还有第二问怎么被我当成组合数学题来做了 首先是第一问 期望具有线性性,于是深度平均值的期望等于深度和的期望值的平均 设\(dp_x\)表示具有\(x\)个叶子节点的树的深度和的期 ...

随机推荐

  1. div 居中显示

    <html lang="en"> <head> <meta charset="UTF-8"> <title>di ...

  2. Ubuntu 配置、使用samba共享文件夹

    安装库 sudo apt install smbclient samba samba-common 启动samba sudo /etc/init.d/samba start 备份配置文件 sudo c ...

  3. Learning to Compare: Relation Network for Few-Shot Learning 论文笔记

    主要原理: 和Siamese Neural Networks一样,将分类问题转换成两个输入的相似性问题. 和Siamese Neural Networks不同的是: Relation Network中 ...

  4. vue-父子组件之传值和单项数据流问题

    前言 我们知道 vue 中父子组件的核心概念是单项数据流问题,props 是单项传递的.那究竟什么是单项数据流问题,这篇文章来总结一下关于这个知识点的学习笔记. 正文 1.父组件传值给子组件 < ...

  5. Qt之文件操作

    虽然文件操作是一项很常用的功能,但是总记不住,今天就干脆记了一下笔记,以后好查阅. 在Qt中,主要使用的是QFile类进行文件操作,因此要包括#include <QFile>头文件.下面就 ...

  6. Springboot自带定时任务实现动态配置Cron参数

    同学们,我今天分享一下SpringBoot动态配置Cron参数.场景是这样子的:后台管理界面对定时任务进行管理,可动态修改执行时间,然后保存入库,每次任务执行前从库里查询时间,以达到动态修改Cron参 ...

  7. 基于Linux的系统排错

    1.系统引导过程概述 2.系统异常及恢复 [1]grub系统引导 1)mbr上446字节丢失 模拟问题: dd if=/dev/zero? of=/dev/vda? bs=446? count=1? ...

  8. pip 源的问题

    pip install -i https://pypi.doubanio.com/simple/ --trusted-host pypi.douban.com some-package

  9. OAuth2-简介

    1. 简介 OAuth(开放授权)是一个开放标准,允许用户让第三方应用访问该用户在某一网站上存储的私密的资源(如照片,视频,联系人列表),而无需将用户名和密码提供给第三方应用.因此OAUTH是安全的. ...

  10. 「山东省队集训2021 Round 1」 半夜

    考虑将 \(X\) 复制一次放到后面再对其长度为 \(n\) 的连续子串和 \(Y\) 求一波 \(\rm{Longest\ Common\ Subsequence}\) 就能得到 \(\Theta( ...