AcWing03. 完全背包问题
有\(N\)种物品和一个容量是\(V\)的背包,每种物品都有无限件可用。
第\(i\)种物品的体积是\(v_i\),价值是\(w_i\)。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,\(N\),\(V\),用空格隔开,分别表示物品种数和背包容积。
接下来有\(N\)行,每行两个整数\(v_i\),\(w_i\),用空格隔开,分别表示第\(i\)种物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
\(0<N,V≤1000\)
\(0<v_i,w_i≤1000\)
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
10
思路:

此时的\(0\)是不选第\(i\)件背包的情况(\(f[i - 1, j]\))、此时的\(k\)是不选第\(k\)件物品的情况、故可以列出状态转移方程为\(f[i - 1, j - k * v[i]] + k * w[i]\)。可以发现、时间复杂度过高、后面讨论优化的问题。
代码1:
#include<iostream>
using namespace std;
const int N = 1010;
int f[N][N];
int v[N],w[N];
int main()
{
int n , m;
cin>>n>>m;
for(int i = 1 ; i <= n ;i ++) cin>>v[i]>>w[i];
for(int i = 1 ; i <= n ;i++)
for(int j = 0 ; j <= m ;j++)
for(int k = 0 ; k*v[i] <= j ; k++)
f[i][j] = max(f[i][j],f[i-1][j-k*v[i]]+k*w[i]);
cout<<f[n][m]<<endl;
}
代码优化:

借助这层优化、我们舍去了k那层循环、大大的降低了时间复杂度(5倍的样子),这样求得的最后的状态转移方程即为所求。
#include <iostream>
using namespace std;
const int N = 1010;
int v[N], w[N];
int f[N][N];
int main()
{
int n, m;
cin >> n >> m;
for(int i = 1 ; i <= n ; i ++ ) cin >> v[i] >> w[i];
for(int i = 1 ; i <= n ; i ++ )
for(int j = 0 ; j <= m ; j ++ )
{
f[i][j] = f[i - 1][j];
if(j >= v[i]) // 物品体积得大于0
{
f[i][j] = max(f[i][j], f[i][j - v[i]] + w[i]);
}
}
cout << f[n][m] << endl;
return 0;
}
与01背包的对比:

AcWing03. 完全背包问题的更多相关文章
- DSY3163*Eden的新背包问题
Description "寄没有地址的信,这样的情绪有种距离,你放着谁的歌曲,是怎样的心心静,能不能说给我听."失忆的Eden总想努力地回忆起过去,然而总是只能清晰地记得那种思念的 ...
- 使用adagio包解决背包问题
背包问题(Knapsack problem) 背包问题(Knapsack problem)是一种组合优化的多项式复杂程度的非确定性问题(NP问题).问题可以描述为:给定一组物品,每种物品都有自己的重量 ...
- bzoj 3163: [Heoi2013]Eden的新背包问题
Description "寄没有地址的信,这样的情绪有种距离,你放着谁的歌曲,是怎样的心心静,能不能说给我听."失忆的Eden总想努力地回忆起过去,然而总是只能清晰地记得那种思念的 ...
- nyoj 106背包问题(贪心专题)
背包问题 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 现在有很多物品(它们是可以分割的),我们知道它们每个物品的单位重量的价值v和重量w(1<=v,w< ...
- [C++11][算法][穷举]输出背包问题的所有可满足解
关于背包问题的题目,前人之述备矣,这里只讨论实现 输入: n ca w_1 v_1 w_2 v_2 ... w_n v_n 其中,n是物品总数,ca是背包大小,w_n是第n个物品的重量,v_n是第n个 ...
- knapsack problem 背包问题 贪婪算法GA
knapsack problem 背包问题贪婪算法GA 给点n个物品,第j个物品的重量,价值,背包的容量为.应选哪些物品放入包内使物品总价值最大? 规划模型 max s.t. 贪婪算法(GA) 1.按 ...
- NOIP2006金明的预算方案[DP 有依赖的背包问题]
题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”.今 ...
- bzoj2748[HAOI2012]音量调节(背包问题的方案)
Description 一个吉他手准备参加一场演出.他不喜欢在演出时始终使用同一个音量,所以他决定每一首歌之前他都要改变一次音量.在演出开始之前,他已经做好了一个列表,里面写着在每首歌开始之前他想要改 ...
- 【动态规划】简单背包问题II
问题 B: [动态规划]简单背包问题II 时间限制: 1 Sec 内存限制: 64 MB提交: 21 解决: 14[提交][状态][讨论版] 题目描述 张琪曼:“为什么背包一定要完全装满呢?尽可能 ...
随机推荐
- 洛谷 P5279 - [ZJOI2019]麻将(dp 套 dp)
洛谷题面传送门 一道 dp 套 dp 的 immortal tea 首先考虑如何判断一套牌是否已经胡牌了,考虑 \(dp\).我们考虑将所有牌按权值大小从大到小排成一列,那我们设 \(dp_ ...
- 金蝶EAS——客户端打开时,提示正在更新的文件d:\eas\client\bin\lib\proxy.jar被其他应用程序占用.请关闭
解决办法: 一.通过调用任务管理器来退出,启用任务管理器需同时按下键Ctrl+Alt+Del,在应用程序中找到金蝶EAS,单击,选择结束任务即可:或者在任务管理器中选择"进程",点 ...
- zabbix忘记密码——进入数据库修改
登录数据库,选择zabbix数据库 查看数据库里面的表 用户和用户密码在users表里面 将你想设置的密码进行MD5加密处理: 更新密码即可: update users set passwd=&quo ...
- C7的开机自启动设置
CentOS 7的服务systemctl脚本存放在:/usr/lib/systemd/,有系统(system)和用户(user)之分 系统服务放在/usr/lib/systemd/system [Un ...
- Linux—export命令查看、修改用户环境变量
Linux export 命令用于设置或显示环境变量. 在 shell 中执行程序时,shell 会提供一组环境变量. export 可新增,修改或删除环境变量,供后续执行的程序使用. export ...
- ggplot2 图例及分页参数
图例: 1 theme(legend.title =element_blank()) 2 guides(fill = guide_legend(title = NULL)) # 去掉图例title 3 ...
- Netty | 第1章 Java NIO 网络编程《Netty In Action》
目录 前言 1. Java 网络编程 1.1 Javs NIO 基本介绍 1.2 缓冲区 Buffer 1.2 通道 Channel 1.3 选择器 Selector 1.4 NIO 非阻塞网络编程原 ...
- javaSE中级篇3——集合体系(另外一种存储容器)——更新完毕
集合还是一种工具,所以它们的包都在java.util包下 1.集合的整个体系结构(是需要掌握的体系,完全体系不是这样) 对图中所说的 序和重复 这两词的说明: 序:指的是添加进去的元素和取出来的元素 ...
- 巩固javawbe第二天
巩固内容: <!DOCTYPE> 声明 <!DOCTYPE>声明有助于浏览器中正确显示网页. 网络上有很多不同的文件,如果能够正确声明HTML的版本,浏览器就能正确显示网页内容 ...
- Windows端口被占用解决方法
Error 场景 启动 Java 项目失败,控制台显示 Error starting ApplicationContext. To display the conditions report`re-r ...