(相信进这个博客的人,都已经看过题目了,不再赘述)

这把打小号打到了\(484\),\(rating + 636\)

\(A\)

考虑进行模拟就行了,说白了这是一个英语阅读题

// code by Dix_
#include<bits/stdc++.h>
#define ll long long inline ll read(){
char C=getchar();
ll N=0 , F=1;
while(('0' > C || C > '9') && (C != '-')) C=getchar();
if(C == '-') F=-1 , C=getchar();
while('0' <= C && C <= '9') N=(N << 1)+(N << 3)+(C - 48) , C=getchar();
return F*N;
} ll T,a[200],b[200],t[200],now; int main(){
scanf("%lld",&T);
while(T -- ){
ll n;
scanf("%lld",&n);
for(int i = 1;i <= n;++i){
scanf("%lld%lld",&a[i],&b[i]);
}
for(int i = 1;i <= n;++i)
scanf("%lld",&t[i]);
ll now = t[1] + a[1];
for(int i = 1;i <= n - 1;++i){
now += std::ceil(((double)b[i] - a[i]) / 2.0);
now = std::max(now,b[i]);
now += (a[i + 1] - b[i] + t[i + 1]);
}
std::cout<<now<<std::endl;
}
}

\(B\)

考虑进行一个差分处理,再还原原数组

// code by Dix_
#include<bits/stdc++.h>
#define ll long long inline ll read(){
char C=getchar();
ll N=0 , F=1;
while(('0' > C || C > '9') && (C != '-')) C=getchar();
if(C == '-') F=-1 , C=getchar();
while('0' <= C && C <= '9') N=(N << 1)+(N << 3)+(C - 48) , C=getchar();
return F*N;
} ll t,cnt[200010],now; int main(){
scanf("%lld",&t);
while(t -- ){
ll n;
scanf("%lld",&n);
for(int i = 0;i <= n + 1;++i)
cnt[i] = 0;
for(int i = 1;i <= n;++i){
ll x = read();
cnt[i + 1] -= 1;
cnt[std::max((ll)0,i - x + 1)] += 1;
}
for(int i = 1;i <= n;++i){
cnt[i] = cnt[i - 1] + cnt[i];
if(cnt[i])
std::cout<<1<<" ";
else
std::cout<<0<<" ";
}
puts("");
}
}

\(C\)

大毒瘤题,想了\(1h\)的做法最后和暴力一样写

观察\(n\)的范围和值域,我们发现在\(n\)较大时,点对数\((n * (n - 1)) / 2 > 2 * |V|\),所以必定有解,那么我们利用这个来进行一个抽屉原理证明

可以证明暴力写法复杂度是对的

// code by Dix_
#include<bits/stdc++.h>
#define ll long long inline ll read(){
char C=getchar();
ll N=0 , F=1;
while(('0' > C || C > '9') && (C != '-')) C=getchar();
if(C == '-') F=-1 , C=getchar();
while('0' <= C && C <= '9') N=(N << 1)+(N << 3)+(C - 48) , C=getchar();
return F*N;
} ll n;
std::map<ll,int>QWQ;
std::map<ll,int>QAQ;
ll num[200005]; int main(){
scanf("%lld",&n);
for(int i = 1;i <= n;++i)
scanf("%lld",&num[i]);
for(int i = 1;i <= n;++i)
for(int j = i + 1;j <= n;++j){
ll sum = num[i] + num[j];
if(QWQ.count(sum))
if(QWQ[sum] != i && QAQ[sum] != j && QWQ[sum] != j && QAQ[sum] != i){
puts("YES");
std::cout<<QWQ[sum]<<" "<<QAQ[sum]<<" "<<i<<" "<<j<<std::endl;
return 0;
}
QWQ[sum] = i,QAQ[sum] = j;
}
puts("NO");
}

\(D\)

考虑一个周期内有多少个不同的,再二分求出后面零散的天数

\(Excrt\)不会,得去学,这题是后来补的

#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm> using namespace std;
typedef long long LL;
typedef unsigned long long ULL; const int N=1e6+5; LL muler(LL x,LL k,LL MOD)
{
LL res=0; x=(x%MOD+MOD)%MOD; k=(k%MOD+MOD)%MOD;
while(k) {
if(k&1) res=(res+x)%MOD;
x=(x+x)%MOD; k>>=1;
}
return res%MOD;
} LL power(LL x,LL k,LL MOD)
{
LL res=1; x%=MOD;
while(k) {
if(k&1) res=muler(res,x,MOD);
x=muler(x,x,MOD); k>>=1;
}
return res%MOD;
} LL exgcd(LL a,LL b,LL& x,LL& y)
{
if(b==0) {
x=1; y=0;
return a;
}
LL z=exgcd(b,a%b,y,x);
y-=a/b*x;
return z;
} LL inv(LL x,LL p)
{
LL y,z; exgcd(x,p,y,z);
return (y%p+p)%p;
} LL excrt(int n,LL b[],LL a[])
{
LL m=a[1],ans=b[1];
for(int i=2;i<=n;i++) {
LL y,z,d=exgcd(m,a[i],y,z);
if((b[i]-ans)%d!=0) return -1;
y=muler(y,(b[i]-ans)/d,a[i]/d); ans+=y*m;
m=a[i]/d*m;
ans=(ans%m+m)%m;
}
return ans;
} LL gcd(LL a,LL b)
{
if(b==0) return a;
else return gcd(b,a%b);
} LL lcm(LL a,LL b) { return a/gcd(a,b)*b; } int n,m;
LL kth;
int a[N],b[N],c[N];
LL A[N],B[N];
vector<LL> v; LL calc(LL day)
{
// cerr<<day<<" "<<day-(upper_bound(v.begin(),v.end(),day)-v.begin())<<endl;
if(day<=0) return 0;
else return day-(upper_bound(v.begin(),v.end(),day)-v.begin());
} int main()
{
// freopen("1.in","r",stdin);
int i,j;
LL x; scanf("%d%d%lld",&n,&m,&kth);
for(i=0;i<n;i++) scanf("%d",&a[i]);
for(i=0;i<m;i++) scanf("%d",&b[i]);
memset(c,-1,sizeof c);
for(i=0;i<n;i++) c[a[i]]=i;
for(i=0;i<m;i++) {
if(~c[b[i]]) {
j=c[b[i]];
A[1]=n; A[2]=m;
B[1]=j; B[2]=i;
x=excrt(2,B,A);
if(x==-1) continue;
v.push_back(x+1);
// cerr<<x<<endl;
}
}
sort(v.begin(),v.end());
LL times=lcm(n,m)-v.size();
LL turns=(kth-1)/times;
kth-=turns*times; LL L=-1,R=lcm(n,m),mid;
while(L+1<R) {
mid=(L+R)>>1;
if(calc(mid)>=kth) R=mid;
else L=mid;
}
printf("%lld\n",turns*lcm(n,m)+R);
return 0;
}

[CF707 Div2, A ~ D]的更多相关文章

  1. bc#54 div2

    用小号做的div2 A:竟然看错了排序顺序...白白WA了两发 注意读入一整行(包括空格):getline(cin,st) [gets也是资瓷的 #include<iostream> us ...

  2. $('div a') 与$('div>a'),.div+.div2与.div~.div2

    $('div a'):div标签下所有层次a元素的jquery对象 $('div>a'):div标签下子元素层次a元素的jquery对象 <body> <div class=' ...

  3. SRM 657 DIV2

    -------一直想打SRM,但是感觉Topcoder用起来太麻烦了.题目还是英文,不过没什么事干还是来打一打好了.但是刚注册的号只能打DIV2,反正我这么弱也只适合DIV2了.. T1: 题目大意: ...

  4. CodeForces Round 192 Div2

    This is the first time I took part in Codeforces Competition.The only felt is that my IQ was contemp ...

  5. Codeforce Round #211 Div2

    真的是b到不行啊! 尼玛C题一个这么简单的题目没出 aabbccddee 正确的是aabccdee 我的是   aabcdee 硬是TM的不够用,想半天还以为自己的是对的... A:题... B:题. ...

  6. Topcoder srm 632 div2

    脑洞太大,简单东西就是想复杂,活该一直DIV2; A:水,基本判断A[I]<=A[I-1],ANS++; B:不知道别人怎么做的,我的是100*N*N;没办法想的太多了,忘记是连续的数列 我们枚 ...

  7. TopCoder 603 div1 & div2

    div2 250pts MiddleCode 题意:s串长度为奇数时,将中间字符取掉并添加到t末尾:长度为偶数时,将中间两个较小的字符取掉并添加到末尾. 分析:直接做,学习了一下substr(s, p ...

  8. TopCoder 649 div1 & div2

    最近一场TC,做得是在是烂,不过最后challenge阶段用一个随机数据cha了一个明显错误的代码,最后免于暴跌rating,还涨了一点.TC题目质量还是很高的,非常锻炼思维,拓展做题的视野,老老实实 ...

  9. 220 DIV2 B. Inna and Nine

    220 DIV2 B. Inna and Nine input 369727 output 2 input 123456789987654321 output 1 题意:比如例子1:369727--& ...

随机推荐

  1. vue基础-动态样式&表单绑定&vue响应式原理

    动态样式 作用:使用声明式变量来控制class和style的值 语法: :class/:style 注意:尽可能不要把动态class和静态class一起使用,原因动态class起作用的时间会比较晚,需 ...

  2. 2021.9.22考试总结[NOIP模拟59]

    T1 柱状图 关于每个点可以作出两条斜率绝对值为\(1\)的直线. 将绝对值拆开,对在\(i\)左边的点\(j\),\(h_i-i=h_j-j\),右边则是把减号换成加号. 把每个点位置为横坐标,高度 ...

  3. C语言链表实例--玩转链表

    下图为最一简单链表的示意图: 第 0 个结点称为头结点,它存放有第一个结点的首地址,它没有数据,只是一个指针变量.以下的每个结点都分为两个域,一个是数据域,存放各种实际的数据,如学号 num,姓名 n ...

  4. 快速了解XML

    1. XML 定义 可扩展标记语言,标准通用标记语言的子集,简称XML.是一种用于标记电子文件使其具有结构性的标记语言. 2. XML 展示 如下是一个xml的标记展示,XML 是不作为的XML 被设 ...

  5. IDA*、操作打表、并行处理-The Rotation Game HDU - 1667

    万恶之源 优秀题解 用文字终究难以穷尽代码的思想 思路 每次操作都有八种选择,相当于一棵每次延申八个子节点的搜索树,故搜索应该是一种方法.而这题要求求最少步数,我们就可以想到可以试试迭代加深搜索(但其 ...

  6. cf Make It Nondeterministic (简单贪心)

    有N个人.每个人都有两个名字. 给出这N个人的一个排列.p[1]...p[N]. 现在让每个人挑自己丙个名字中的一个名字.问是否存在一种方案,使得挑出来的N个名字按字典序排完以后正好是p[1]...p ...

  7. Cobar SQL审计的设计与实现

    背景介绍 Cobar简介 Cobar 是阿里开源的一款数据库中间件产品. 在业务高速增长的情况下,数据库往往成为整个业务系统的瓶颈,数据库中间件的出现就是为了解决数据库瓶颈而产生的一种中间层产品. 在 ...

  8. 超过1W字深度剖析JVM常量池(全网最详细最有深度)

    面试题:String a = "ab"; String b = "a" + "b"; a == b 是否相等 面试考察点 考察目的: 考察对 ...

  9. 西邮Linux兴趣小组第一次技术分享会

    2016年10月30日晚,西邮Linux兴趣小组技术分享会在西安邮电大学长安校区东区逸夫教学楼FF305室成功举办.200多名来自全校不同专业的15,16级同学参加了此次分享会. 分享会于20:00正 ...

  10. Java经典面试题-不古出品

    @ 目录 一.Java 基础 1.JDK 和 JRE 有什么区别? 2.== 和 equals 的区别是什么? 3.两个对象的 hashCode()相同,则 equals()也一定为 true,对吗? ...