考虑将两次移动作为一个整体,两次移动的效果分为:$s-u$、$u-s$和原地不动

对于从$s$回到$s$路径,必然有前两种效果使用次数相同,假设都为$i$(枚举),那么原地不动的次数$j=\frac{a+b+c+d}{2}-i$

$2i$次中使用$t$来移动的次数$x$,那么使用$v$的次数即为$y=2i-x$,之后这里有$2i\choose x$种方案(注意这$2i$次操作顺序已经确定,必然是$s-u$再$u-s$循环排列)

考虑原地不动的贡献:在$s$上原地不动的$\frac{a+d}{2}-i$次(这里分子要减去$x+y$,即$2i$)划分为了$i+1$段(可以为空,通过插板法计算),且内部有$\frac{a+d}{2}-i\choose \frac{a-x}{2}$种排列,在$t$上原地不动的类似

综合上述,即$[b+c=0]{a+d\choose a}+\sum_{i=1}^{\frac{a+b+c+d}{2}}\sum_{x=0}^{2i}{2i\choose x}{\frac{a+d}{2}\choose i}{\frac{a+d}{2}-i\choose \frac{a-x}{2}}{\frac{b+c}{2}-1\choose i-1}{\frac{b+c}{2}-i\choose \frac{b-x}{2}}$

对后半部分化简,即$(\frac{a+d}{2})!(\frac{b+c}{2}-1)!\sum_{i=0}^{\frac{a+b+c+d}{2}}\frac{(2i)!}{i!(i-1)!}\sum_{x=0}^{2i}\frac{1}{x!(\frac{a-x}{2})!(\frac{b-x}{2})!(2i-x)!(\frac{d-(2i-x)}{2})!(\frac{c-(2i-x)}{2}))}$

关于$x$的枚举是一个多项式乘法的形式,即记$h(x)=\frac{1}{x!(\frac{a-x}{2})!(\frac{b-x}{2})!}$且$g(x)=\frac{1}{x!(\frac{d-x}{2})!(\frac{c-x}{2})!}$,考虑$f(x)=g(x)h(x)$的$k$次项系数即为$i=\frac{k}{2}$时后面的值,用ntt计算即可,时间复杂度为$o(n\log_{2}n)$(其中$n=a+b+c+d$)

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 5000005
4 #define mod 998244353
5 int n,a,b,c,d,ans,fac[N],inv[N],rev[N],g[N],f[N];
6 int C(int n,int m){
7 return 1LL*fac[n]*inv[m]%mod*inv[n-m]%mod;
8 }
9 int ksm(int n,int m){
10 if (!m)return 1;
11 int s=ksm(n,m>>1);
12 s=1LL*s*s%mod;
13 if (m&1)s=1LL*s*n%mod;
14 return s;
15 }
16 void ntt(int *a,int p){
17 for(int i=0;i<(1<<22);i++)
18 if (i<rev[i])swap(a[i],a[rev[i]]);
19 for(int i=2;i<=(1<<22);i*=2){
20 int s=ksm(3,(mod-1)/i);
21 if (p)s=ksm(s,mod-2);
22 for(int j=0;j<(1<<22);j+=i)
23 for(int k=0,ss=1;k<(i>>1);k++,ss=1LL*ss*s%mod){
24 int x=a[j+k],y=1LL*a[j+k+(i>>1)]*ss%mod;
25 a[j+k]=(x+y)%mod;
26 a[j+k+(i>>1)]=(x+mod-y)%mod;
27 }
28 }
29 if (p){
30 int s=ksm((1<<22),mod-2);
31 for(int i=0;i<(1<<22);i++)a[i]=1LL*a[i]*s%mod;
32 }
33 }
34 int main(){
35 fac[0]=inv[0]=inv[1]=1;
36 for(int i=1;i<N-4;i++)fac[i]=1LL*fac[i-1]*i%mod;
37 for(int i=2;i<N-4;i++)inv[i]=1LL*(mod-mod/i)*inv[mod%i]%mod;
38 for(int i=1;i<N-4;i++)inv[i]=1LL*inv[i-1]*inv[i]%mod;
39 scanf("%d%d%d%d",&a,&b,&c,&d);
40 if (((a+d)&1)||((b+c)&1)||((a+b)&1)){
41 printf("0");
42 return 0;
43 }
44 if ((!b)&&(!c)){
45 printf("%d",C(a+d,a));
46 return 0;
47 }
48 n=a+b+c+d;
49 for(int i=0;i<(1<<22);i++)rev[i]=(rev[i>>1]>>1)+((i&1)<<21);
50 for(int i=0;i<=min(a,b);i++)
51 if ((a-i)%2==0)f[i]=1LL*inv[i]*inv[(a-i)/2]%mod*inv[(b-i)/2]%mod;
52 for(int i=0;i<=min(c,d);i++)
53 if ((c-i)%2==0)g[i]=1LL*inv[i]*inv[(c-i)/2]%mod*inv[(d-i)/2]%mod;
54 ntt(g,0);
55 ntt(f,0);
56 for(int i=0;i<(1<<22);i++)f[i]=1LL*f[i]*g[i]%mod;
57 ntt(f,1);
58 for(int i=1;i<=(b+c)/2;i++)ans=(ans+1LL*fac[2*i]*inv[i]%mod*inv[i-1]%mod*f[2*i])%mod;
59 ans=1LL*ans*fac[(a+d)/2]%mod*fac[(b+c)/2-1]%mod;
60 printf("%d",ans);
61 }

[atAGC051D]C4的更多相关文章

  1. 跟我一起数据挖掘(23)——C4.5

    C4.5简介 C4.5是一系列用在机器学习和数据挖掘的分类问题中的算法.它的目标是监督学习:给定一个数据集,其中的每一个元组都能用一组属性值来描述,每一个元组属于一个互斥的类别中的某一类.C4.5的目 ...

  2. 【十大经典数据挖掘算法】C4.5

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 决策树模型与学习 决策树(de ...

  3. C4.5算法的学习笔记

    有日子没写博客了,这些天忙着一些杂七杂八的事情,直到某天,老师喊我好好把数据挖掘的算法搞一搞!于是便由再次埋头看起算法来!说起数据挖掘的算法,我想首先不得的不提起的就是大名鼎鼎的由决策树算法演化而来的 ...

  4. C4.5学习及源码阅读

    下面是C4.5源码的下载地址: http://www.rulequest.com/Personal/ 这里先立一个flag,后续更新...... 恕我孤陋寡闻,第一次看到这样的主函数: #includ ...

  5. 数据挖掘算法(一)C4.5

    统计了14天的气象数据D(指标包括outlook,temperature,humidity,windy),并已知这些天气是否打球(play).如果给出新一天的气象指标数据:sunny,cool,hig ...

  6. ID3、C4.5、CART、RandomForest的原理

    决策树意义: 分类决策树模型是表示基于特征对实例进行分类的树形结构.决策树可以转换为一个if_then规则的集合,也可以看作是定义在特征空间划分上的类的条件概率分布. 它着眼于从一组无次序.无规则的样 ...

  7. C4.5,CART,randomforest的实践

    #################################Weka-J48(C4.5)################################# ################### ...

  8. c4,configure the debug environment

    Yesterday I found a tiny C compiler (less than 600 line of C code, containing commits) called " ...

  9. 决策树 -- C4.5算法

    C4.5是另一个分类决策树算法,是基于ID3算法的改进,改进点如下: 1.分离信息   解释:数据集通过条件属性A的分离信息,其实和ID3中的熵:   2.信息增益率   解释:Gain(A)为获的A ...

随机推荐

  1. 从0到1使用Kubernetes系列——Kubernetes入门

    基本概念 Docker 是什么 Docker 起初是 dotCloud 公司创始人 Solomon Hykes 在法国的时候发起的一项公司内部项目,Docker 是基于 dotCloud 公司多年云服 ...

  2. visualbox安装ubuntu18过程中不能输入name,password,密码,姓名问题的解决办法+一些基本操作

    ​ 问题描述:visualbox安装ubuntu18,,,,卡在注册处,无法输入姓名,密码-点击无法输入............如下图: ​ 解决办法:更改你的Ubuntu的主板内存,主板内存默认的值 ...

  3. 「JOISC 2020 Day2」变态龙之色 题解

    题目传送门 注意 同性必定不同色 必有一个同色异性,且不相互不喜欢 Solution 我们发现,我们问题比较大的就是如何确定性别问题.我们可以一个一个加进去,在原来已经确定了的二分图上增加新的性别关系 ...

  4. HAOI2012高速公路bzoj2752 (线段树,数学)

    题目大意: 给定一个长度为n的链,一共m次操作 对于每次操作 \(C\ l\ r\ x\)表示将第l个点到第r个点之间的所有道路的权值增加v \(Q\ l\ r\)在第l个到第r个点里等概率随机取出两 ...

  5. 2020.10.17-pta天梯练习赛补题

    7-5敲笨钟 微博上有个自称"大笨钟V"的家伙,每天敲钟催促码农们爱惜身体早点睡觉.为了增加敲钟的趣味性,还会糟改几句古诗词.其糟改的方法为:去网上搜寻压"ong&quo ...

  6. STM32中操作寄存器GPIOB_CRL &= ~( 0x0F<< (4*0))与GPIOB_CRL &=~(0x0F)之间有什么区别吗?

    没有区别,作用相同.只是这样写便于修改和沿用. 对于只用到PB0端口的程序~(0x0f << (4*0)) 和~0x0f没有区别.0x0f <<(4*N) 就是 向左 移动N个 ...

  7. 【UE4 C++ 基础知识】<11>资源的同步加载与异步加载

    同步加载 同步加载会造成进程阻塞. FObjectFinder / FClassFinder 在构造函数加载 ConstructorHelpers::FObjectFinder Constructor ...

  8. [对对子队]发布声明Beta

    Beta版本的新功能 新增的游戏内容 循环部分关卡 Beta阶段我们制作了游戏的第4-6关,为循环部分关卡.这一部分的关卡设计以编程的循环思想为基础,在流水线中加入了新的命令--循环语句,并以此为核心 ...

  9. Noip模拟80 2021.10.18

    预计得分:5 实际得分:140?????????????? T1 邻面合并 我考场上没切掉的大水题....(证明我旁边的cty切掉了,并觉得很水) 然而贪心拿了六十,离谱,成功做到上一篇博客说的有勇气 ...

  10. OTA测试介绍

    OTA 测试介绍 手机的无源测试和有源测试 当前在手机射频性能测试中越来越关注整机辐射性能的测试,这种辐射性能反映了手目前主要有两种方法对手机的辐射性能进行考察:一种是从天线是目前较为传统的天线测试方 ...