Luogu P1314 [NOIP2011 提高组] 聪明的质监员
题意
题目描述
- 给定\(n\)个物品,给定每个物品的 重量 \(w_i\) 和 价值 \(v_i\)
- 给定一个标准值 \(s\) 以及一个参数 \(w\)
- 质检员每次会抽取\(m\)个区间,每次的抽检结果为 \(y = \sum_{l_i}^{r_i} (w_i \ge w) · \sum_{l_i}^{r_i} v_i\)
- 求出 \(\min{\mid{y - s}\mid}\)
数据范围
\(1 \le n,m \le 2^5\), \(0 < w_i, v_i \le 10^6\) \(0 < s \le 10^12\), \(1 \le l_i \le r_i \le n\)
SOLUTION
当 \(y > s\) 的时候, \(y - s > 0\) 当 \(y < s\) 的时候, \(y - s < 0\) 我们想让 \(y\) 尽可能的逼近 \(s\) 对于参数\(w\),当\(w\)越大,\(y\)越小
因此本题具有单调性。 考虑二分\(w\) 使得 \(y\) 尽可能的逼近\(s\) 即可
AC_CODE_1
#include <bits/stdc++.h>
#define LL long long
using namespace std;
const int N = 2e5 + 10;
int n, m, l = INF, r = -INF;
LL s; // 不开 long long 见祖宗 | =^_^= |
int L[N], R[N];
int w[N], v[N];
LL p1[N], p2[N];
LL chk(int x) {
for(int i = 1; i <= n; i ++ ) {
p1[i] = p1[i - 1]; p2[i] = p2[i - 1];
if(w[i] >= x) {
p1[i] += v[i];
p2[i] ++;
}
}
// printf("\n%d\n", x);
LL ANS = 0;
rep(i, 1, m) {
// printf("> %d %d %lld %lld\n",L[i], R[i], (p1[R[i]] - p1[L[i] - 1]) , (p2[R[i]] - p2[L[i] - 1]));
ANS += (p1[R[i]] - p1[L[i] - 1]) * (p2[R[i]] - p2[L[i] - 1]);
}
return ANS;
}
inline void solve() {
read(n); read(m); read(s);
rep(i, 1, n) {
read(w[i]); read(v[i]);
l = min(l, w[i]); r = max(r, w[i]);
}
rep(i, 1, m) {
read(L[i]); read(R[i]);
}
l --, r ++;
LL ans = INFF;
while(l <= r) { // 由于 l = mid + 1, r = mid - 1 因此while循环里面的条件应该是 l <= r
int mid = l + r >> 1;
LL res = chk(mid);
if(res >= s) l = mid + 1; // 如果结果 y > s 我们就让 w 大一点 这样 y就会小一点更逼近 s
else r = mid - 1; //同理
ans = min(ans, abs(res - s));
// printf("> %d %lld\n", mid, res);
}
printf("%lld\n", ans);
}
signed main()
{
// freopen("in.txt", "r", stdin);
solve();
return 0;
}
AC_CODE_2
//倍增写法
#include <cstdio>
#include <iostream>
#define LL long long
const int N = 2e5 + 10;
int n, m, ans = 1; LL s;
int w[N], v[N], L[N], R[N]; LL s1[N], s2[N];
inline LL chk(int W) {
for(int i = 1; i <= n; ++ i) {
s1[i] = w[i] >= W ? s1[i - 1] + 1 : s1[i - 1];
s2[i] = w[i] >= W ? s2[i - 1] + v[i] : s2[i - 1];
}
LL res = 0;
for(int i = 1; i <= m; ++ i ) {
res += (s1[R[i]] - s1[L[i] - 1]) * (s2[R[i]] - s2[L[i] - 1]);
}
return res;
}
int main() {
scanf("%d%d%lld", &n, &m, &s);
for(int i = 1; i <= n; i ++ ) scanf("%d%d", &w[i], &v[i]);
for(int i = 1; i <= m; i ++ ) scanf("%d%d", &L[i], &R[i]);
for(int i = 17; i >= 0; -- i) {
ans += chk(ans + (1 << i)) >= s ? (1 << i) : 0;
}
printf("%lld\n", std::min(chk(ans) - s, s - chk(ans + 1)));
return 0;
}
Luogu P1314 [NOIP2011 提高组] 聪明的质监员的更多相关文章
- NOIP2011提高组 聪明的质监员 -SilverN
题目描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 n 个矿石,从 1到n 逐一编号,每个矿石都有自己的重量 wi 以及价值vi .检验矿产的流程是: 1 .给定m 个区间[L ...
- Noip2011提高组 聪明的质监员
题目传送门 讲真,既然质监员这么聪明,为什么要让我们帮他设计程序? 所以还是叫ZZ的质检员吧 其实,我最想说的,不是这个题,而是这个\(\Sigma\)(一见 \(\Sigma\) 就懵逼系列) 这个 ...
- NOIP2011 提高组 聪明的质监员(二分+前缀和)
看到这道题,应该都能想到用二分,那问题是怎么去判定呢? 我们考虑用前缀和(a1统计w,a2统计v),枚举每个矿石,,当前判定的值是x,如果该矿石的w>=x,a1[i]=a1[i-1]+1,a2[ ...
- 洛谷P1314 [NOIP2011提高组Day2T2] 聪明的质监员
P1314 聪明的质监员 题目描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 n 个矿石,从 1到n 逐一编号,每个矿石都有自己的重量 wi 以及价值vi .检验矿产的流程是: ...
- Codevs 1138 聪明的质监员 2011年NOIP全国联赛提高组
1138 聪明的质监员 2011年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 小 T 是一名质量监督员, ...
- 【洛谷P1314】[NOIP2011]聪明的质监员
聪明的质监员 题目链接:https://www.luogu.org/problemnew/show/P1314 Y(W)随W的值增大而减小 二分W的值,找到最小的W使得Y(W)>S: 比较Y(W ...
- 聪明的质监员 2011年NOIP全国联赛提高组(二分+前缀和)
聪明的质监员 2011年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 小 T 是一名质量监督员, ...
- luogu P1314 聪明的质监员 x
P1314 聪明的质监员(至于为什么选择这个题目,可能是我觉得比较好玩呗) 题目描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 n 个矿石,从 1到n 逐一编号,每个矿石都有自 ...
- Luogu P1314 聪明的质监员(二分+前缀和)
P1314 聪明的质监员 题意 题目描述 小\(T\)是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有\(n\)个矿石,从\(1\)到\(n\)逐一编号,每个矿石都有自己的重量\(w_i\) ...
随机推荐
- LeetCode1239串联字符串的最大长度
题目 给定一个字符串数组 arr,字符串 s 是将 arr 某一子序列字符串连接所得的字符串,如果 s 中的每一个字符都只出现过一次,那么它就是一个可行解. 请返回所有可行解 s 中最长长度. 解题 ...
- Multiple(poj1465)
Multiple Time Limit: 1000MS Memory Limit: 32768K Total Submissions: 7183 Accepted: 1540 Descript ...
- 安装并配置 Android Studio 开发工具和 Genymotion 模拟器
需求说明: 安装并配置 Android Studio 开发工具和 Genymotion 模拟器. 熟练使用 Genymotion 模拟器,掌握 Genymotion 模拟器的基本设置和程序安装. 实现 ...
- 如何下载安装JDBC_jar包,MySQL_JDBC_jar包的下载与使用(Windows)
一. 下载 (1) 打开MySQL_JDBC的下载网站:https://dev.mysql.com/downloads/connector/j/ (2) 选择操作系统:Platform Indepen ...
- 论文翻译:2020_Attention Wave-U-Net for Acoustic Echo Cancellation
论文地址:http://www.interspeech2020.org/uploadfile/pdf/Thu-1-10-10.pdf Attention Wave-U-Net 的回声消除 摘要 提出了 ...
- Kafka单机安装Version1.0.1(自带Zookeeper)
1.说明 Kafka单机安装,基于版本1.0.1, 使用kafka_2.12-1.0.1.tgz安装包, 其中2.12是编译工具Scala的版本. 而且不需要另外安装Zookeeper服务, 使用Ka ...
- js tab栏切换
<!DOCTYPE html><html lang="en"> <head> <meta charset="UTF-8" ...
- jsencrypt vue相关的rsa加密
vue组件引入 import { JSEncrypt } from 'jsencrypt' 方法内使用 let publicKey = asdfsafdadfafasjdhfasfd // 从后台获取 ...
- Windows 10 安装 Git 与初次运行前的配置
Windows 10 安装 Git 与初次运行前的配置 在 Windows 上安装 初次运行 Git 前的配置 用户信息 文本编辑器 检查配置信息 获取 Git 仓库 在现有目录中初始化仓库 克隆现有 ...
- 【爬虫】从零开始使用 Scrapy
一. 概述 最近有一个爬虫相关的需求,需要使用 scrapy 框架来爬取数据,所以学习了一下这个非常强大的爬虫框架,这里将自己的学习过程记录下来,希望对有同样需求的小伙伴提供一些帮助. 本文主要从下面 ...