14-2-Unsupervised Learning ----Word Embedding
Introduction
词嵌入(word embedding)是降维算法(Dimension Reduction)的典型应用
那如何用vector来表示一个word呢?
1-of-N Encoding
最传统的做法是1-of-N Encoding,假设这个vector的维数就等于世界上所有单词的数目,那么对每一个单词来说,只需要某一维为1,其余都是0即可;但这会导致任意两个vector都是不一样的,你无法建立起同类word之间的联系
Word Class
还可以把有同样性质的word进行聚类(clustering),划分成多个class,然后用word所属的class来表示这个word,但光做clustering是不够的,不同class之间关联依旧无法被有效地表达出来
Word Embedding
词嵌入(Word Embedding)把每一个word都投影到高维空间上,当然这个空间的维度要远比1-of-N Encoding的维度低,假如后者有10w维,那前者只需要50~100维就够了,这实际上也是Dimension Reduction的过程
类似语义(semantic)的词汇,在这个word embedding的投影空间上是比较接近的,而且该空间里的每一维都可能有特殊的含义
假设词嵌入的投影空间如下图所示,则横轴代表了生物与其它东西之间的区别,而纵轴则代表了会动的东西与静止的东西之间的差别

怎么做Word Embedding?

那怎么做word Embedding呢?word Embedding是Unsupervised 。我们怎么让machine知道每一个词汇的含义是什么呢,你只要透过machine阅读大量的文章,它就可以知道每一个词汇它的embeding feature vector应该长什么样子。

word embedding是一个无监督的方法(unsupervised approach),只要让机器阅读大量的文章,它就可以知道每一个词汇embedding之后的特征向量应该长什么样子。
我们的任务就是训练一个neural network,input是词汇,output则是它所对应的word embedding vector,实际训练的时候我们只有data的input,该如何解这类问题呢?
之前提到过一种基于神经网络的降维方法,Auto-encoder,就是训练一个model,让它的输入等于输出,取出中间的某个隐藏层就是降维的结果,自编码的本质就是通过自我压缩和解压的过程来寻找各个维度之间的相关信息;但word embedding这个问题是不能用Auto-encoder来解的,因为输入的向量通常是1-of-N编码,各维无关,很难通过自编码的过程提取出什么有用信息。
Word Embedding
basic idea
基本精神就是,每一个词汇的含义都可以根据它的上下文来得到
比如机器在两个不同的地方阅读到了“马英九520宣誓就职”、“蔡英文520宣誓就职”,它就会发现“马英九”和“蔡英文”前后都有类似的文字内容,于是机器就可以推测“马英九”和“蔡英文”这两个词汇代表了可能有同样地位的东西,即使它并不知道这两个词汇是人名

怎么用这个思想来找出word embedding的vector呢?有两种做法:
- Count based
- Prediction based
Count based

Prediction based
how to do perdition

Why prediction works


Sharing Parameters
14-2-Unsupervised Learning ----Word Embedding的更多相关文章
- Unsupervised Learning: Use Cases
Unsupervised Learning: Use Cases Contents Visualization K-Means Clustering Transfer Learning K-Neare ...
- Unsupervised Learning and Text Mining of Emotion Terms Using R
Unsupervised learning refers to data science approaches that involve learning without a prior knowle ...
- 从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史(转载)
转载 https://zhuanlan.zhihu.com/p/49271699 首发于深度学习前沿笔记 写文章 从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 张 ...
- 建模角度理解word embedding及tensorflow实现
http://www.jianshu.com/p/d44ce1e3ec2f 1. 前言 本篇主要介绍关键词的向量表示,也就是大家熟悉的word embedding.自Google 2013 年开源wo ...
- Word Embedding与Word2Vec
http://blog.csdn.net/baimafujinji/article/details/77836142 一.数学上的“嵌入”(Embedding) Embed这个词,英文的释义为, fi ...
- DeepNLP的核心关键/NLP词的表示方法类型/NLP语言模型 /词的分布式表示/word embedding/word2vec
DeepNLP的核心关键/NLP语言模型 /word embedding/word2vec Indexing: 〇.序 一.DeepNLP的核心关键:语言表示(Representation) 二.NL ...
- [DeeplearningAI笔记]序列模型2.1-2.2词嵌入word embedding
5.2自然语言处理 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.1词汇表征 Word representation 原先都是使用词汇表来表示词汇,并且使用1-hot编码的方式来表示词汇 ...
- Unsupervised learning, attention, and other mysteries
Unsupervised learning, attention, and other mysteries Get notified when our free report “Future of M ...
- 无监督学习(Unsupervised Learning)
无监督学习(Unsupervised Learning) 聚类无监督学习 特点 只给出了样本, 但是没有提供标签 通过无监督学习算法给出的样本分成几个族(cluster), 分出来的类别不是我们自己规 ...
随机推荐
- 简单介绍session,cookie,token以及区别
Cookie简介 ①.是由服务器发给客户端的特殊信息,以文本的形式存放在客户端 ②.客户端再次请求的时候,会把Cookie回发给服务器 ③.服务器接收到后,会解析Cookie生成与客户端相对应的内容 ...
- 【原创】xenomai 在X86平台下中断响应时间测试
1.中断响应时间 实时操作系统的意义就在于能够在确定的时间内处理各种突发的事件,而中断这些事件.系统抢占调度的触发点,因而衡量嵌入式实时操作系统的最主要.最具有代表性的性能指标参数无疑是中断响应时间. ...
- JS中变量的命名规范
命名规范 包含数字.字母.下划线和$,但 不能以数字开头 变量名严格区分大小写 变量名不能是关键字和保留字 变量名要见名知意 如果变量名有多个单词组成,推荐使用 小驼峰命名法 命名时,尽量使用英语,如 ...
- JavaScript 字符串(上)
JavaScript 字符串(上) 三种引号 字符串可以包含在单引号.双引号或反引号中 //用法 let single = 'Single quotation mark'; //单引号 let dou ...
- pytest执行时mian函数传参
在代码中执行pytest可以通过main函数 加参数来指定运行规则时,参数需要放在列表或者元祖中 # pytest.main(["--html=report.html"]) # p ...
- Redis 面试常见问题———缓存雪崩、缓存击穿以及缓存穿透
在开发中会面临缓存异常可能会出现三个问题,分别是缓存雪崩.缓存击穿和缓存穿透.这三个问题会导致大量请求从缓存转移到数据库,如果请求的并发量很大的话,就会导致数据库崩溃.所以在面试官也会经常问这些问题. ...
- Hive SQL的底层编译过程详解
本文结构采用宏观着眼,微观入手,从整体到细节的方式剖析 Hive SQL 底层原理.第一节先介绍 Hive 底层的整体执行流程,然后第二节介绍执行流程中的 SQL 编译成 MapReduce 的过程, ...
- vue.$nextTick实现原理
源码: const callbacks = [] let pending = false function flushCallbacks () { pending = false const copi ...
- Java:Iterator接口与fail-fast小记
Java:Iterator接口与fail-fast小记 对 Java 中的 Iterator接口 和 fail-fast,做一个微不足道的小小小小记 Iterator Iterator接口 Itera ...
- JAVA实现表达式求导运算的分析总结
1第一次作业 1.1题目描述 对形如4*x+x^2+x的多项式求导. 1.2类图 1.3度量分析 在完成第一次作业时,我的写法没有特别的"面向对象".唯一封装起来的是Node,代表 ...