[cf559E]Gerald and Path
将所有线段的端点(即$a_{i}$和$a_{i}\pm l_{i}$)离散,并按照$a_{i}$从小到大排序
定义$f_{i,,j}$表示前$i$条线段在位置$j$之前最多能覆盖的长度(默认覆盖到$j$,允许覆盖到$j$之后,但该部分不计入覆盖的长度),转移对第$i$条线段的方向分类讨论:
(关于"默认覆盖到$j$",完整的描述即默认$[a_{i},j]$已经被覆盖,即之后覆盖不计算贡献)
1.若第$i$条线段向右覆盖,即有
$$
f_{i,j}=\begin{cases}f_{i-1,j}&(j\le a_{i}或a_{i}+l_{i}<j)\\f_{i-1,a_{i}}+(j-a_{i})&(a_{i}<j\le a_{i}+l_{i})\end{cases}
$$
2.若第$i$条线段向左覆盖,即有
$$
f_{i,j}=\begin{cases}f_{i-1,j}&(j\le a_{i}-l_{i})\\f_{i-1,a_{i}-l_{i}}+(j-(a_{i}-l_{i}))&(a_{i}-l_{i}<j\le a_{i})\\\max_{1\le k\le i}\left(f_{k-1,a_{i}-l_{i}}+\min(a_{k}+l_{k},j)-(a_{i}-l_{i})\right) &(a_{i}<j)\end{cases}
$$
这里解释一下第3种情况,考虑枚举最终右端点的位置(如果选$k=i$即不存在,注意此时中间应为$a_{k}$),那么注意到在其之后的直线如果向前覆盖到$a_{i}-l_{i}$之前,即已将整个$[a_{i}-l_{i},a_{i}]$全部覆盖,那么显然一定不如向右覆盖,因此即只需要考虑其之前的线段即可
综上,时间复杂度为$o(n^{3})$,可以通过
事实上,还可以进行优化,复杂度的瓶颈在于向左覆盖时$a_{i}<j$的部分,显然该部分可以用线段树优化(只需要对$a_{k}+l_{k}$和$j$的大小关系分类讨论即可),时间复杂度即降为$o(n^{2}\log n)$

1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 105
4 map<int,int>mat;
5 map<int,int>::iterator it;
6 int n,m,a[N],l[N],pos[N*3],id[N],posl[N],posm[N],posr[N],f[N][N*3];
7 bool cmp(int x,int y){
8 return a[x]<a[y];
9 }
10 int main(){
11 scanf("%d",&n);
12 for(int i=1;i<=n;i++){
13 scanf("%d%d",&a[i],&l[i]);
14 mat[a[i]]=mat[a[i]-l[i]]=mat[a[i]+l[i]]=1;
15 }
16 for(it=mat.begin();it!=mat.end();it++){
17 mat[(*it).first]=++m;
18 pos[m]=(*it).first;
19 }
20 for(int i=1;i<=n;i++)id[i]=i;
21 sort(id+1,id+n+1,cmp);
22 for(int i=1;i<=n;i++){
23 int x=id[i];
24 posl[i]=mat[a[x]-l[x]];
25 posm[i]=mat[a[x]];
26 posr[i]=mat[a[x]+l[x]];
27 }
28 for(int i=1;i<=n;i++)
29 for(int j=1;j<=m;j++){
30 int x=id[i];
31 f[i][j]=f[i-1][j];
32 if (a[x]<pos[j])f[i][j]=max(f[i][j],f[i-1][posm[i]]+min(pos[j]-a[x],l[x]));
33 if ((a[x]-l[x]<pos[j])&&(pos[j]<=a[x]))f[i][j]=max(f[i][j],f[i-1][posl[i]]+(pos[j]-(a[x]-l[x])));
34 if (a[x]<pos[j]){
35 f[i][j]=max(f[i][j],f[i-1][posl[i]]+l[x]);
36 for(int k=1;k<i;k++)f[i][j]=max(f[i][j],f[k-1][posl[i]]+min(a[id[k]]+l[id[k]],pos[j])-(a[x]-l[x]));
37 }
38 }
39 printf("%d\n",f[n][m]);
40 return 0;
41 }
[cf559E]Gerald and Path的更多相关文章
- 「CF559E」 Gerald and Path
「CF559E」 Gerald and Path 为啥我现在做啥题都在想网络流啊 考虑 \(\texttt{DP}\). 容易想到状态应该包含当前枚举了前 \(i\) 条线段,且第 \(i\) 条线段 ...
- Codeforces 559E - Gerald and Path(dp)
题面传送门 真·难度 *3000 的 D1E hb 跟我们说"做不出来不太应该". 首先我们将所有线段按 \(a_i\) 从小到大排序,一个很显然的想法是 \(dp_{i,j,d} ...
- NodeJs之Path
Path模块 NodeJs提供的Path模块,使得我们可以对文件路径进行简单的操作. API var path = require('path'); var path_str = '\\Users\\ ...
- 【原】实时渲染中常用的几种Rendering Path
[原]实时渲染中常用的几种Rendering Path 本文转载请注明出处 —— polobymulberry-博客园 本文为我的图形学大作业的论文部分,介绍了一些Rendering Path,比较简 ...
- Node.js:path、url、querystring模块
Path模块 该模块提供了对文件或目录路径处理的方法,使用require('path')引用. 1.获取文件路径最后部分basename 使用basename(path[,ext])方法来获取路径的最 ...
- VSCode调试go语言出现:exec: "gcc": executable file not found in %PATH%
1.问题描述 由于安装VS15 Preview 5,搞的系统由重新安装一次:在用vscdoe编译go语言时,出现以下问题: # odbcexec: "gcc": executabl ...
- Leetcode 笔记 113 - Path Sum II
题目链接:Path Sum II | LeetCode OJ Given a binary tree and a sum, find all root-to-leaf paths where each ...
- Leetcode 笔记 112 - Path Sum
题目链接:Path Sum | LeetCode OJ Given a binary tree and a sum, determine if the tree has a root-to-leaf ...
- Thinking in Unity3D:渲染管线中的Rendering Path
关于<Thinking in Unity3D> 笔者在研究和使用Unity3D的过程中,获得了一些Unity3D方面的信息,同时也感叹Unity3D设计之精妙.不得不说,笔者最近几年的 ...
随机推荐
- 中国唯一入选 Forrester 领导者象限,阿里云 Serverless 全球领先
3 月 26 日消息,权威咨询机构 Forrester 发布 2021 年第一季度 FaaS 平台评估报告,阿里云函数计算凭借在产品能力.安全性.战略愿景和市场规模等方面的优势脱颖而出,产品能力位列全 ...
- Lamport时间戳论文笔记
本文主要参考文献[1]完成. 声明:本人仅在博客园发表了本文章,笔名LightningStar,其他网站均为转载. 笔记 私以为,论文中作者的核心工作是为分布式系统建立了一种数学模型,并基于这种数学模 ...
- k8s学习笔记(1)- 简单部署springboot应用
前言:k8s全称kubernetes,k8s是为容器服务而生的一个可移植容器的编排管理工具,越来越多的公司正在拥抱k8s,并且当前k8s已经主导了云业务流程,关于更多的k8s知识,可自行学习 1.k8 ...
- 用C++实现的数独解题程序 SudokuSolver 2.1 及实例分析
SudokuSolver 2.1 程序实现 在 2.0 版的基础上,2.1 版在输出信息上做了一些改进,并增加了 runtil <steps> 命令,方便做实例分析. CQuizDeale ...
- MyBatis原生批量插入的坑与解决方案!
前面的文章咱们讲了 MyBatis 批量插入的 3 种方法:循环单次插入.MyBatis Plus 批量插入.MyBatis 原生批量插入,详情请点击<MyBatis 批量插入数据的 3 种方法 ...
- Java(34)IO流之字符流
作者:季沐测试笔记 原文地址:https://www.cnblogs.com/testero/p/15228453.html 博客主页:https://www.cnblogs.com/testero ...
- 蝉知CMS 7.X XSS漏洞复现
个人博客地址:xzajyjs.cn 作为一个开源的企业门户系统(EPS), 企业可以非常方便地搭建一个专业的企业营销网站,进行宣传,开展业务,服务客户.蝉知系统内置了文章.产品.论坛.评论.会员.博客 ...
- 原生js-无缝滚动
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 【Azure 应用服务】App Service For Linux 如何在 Web 应用实例上住抓取网络日志
问题描述 在App Service For Windows的环境中,我们可以通过ArmClient 工具发送POST请求在Web应用的实例中抓取网络日志,但是在App Service For Linu ...
- 如何知道当前使用的python的安装路径
电脑里多处安装了python,那么如何得知当前使用python的安装路径呢? 方法一 运行python指令: import sys print(sys.executable) 方法二 对于终端和Win ...