Horovod Install
Horovod documentation
安装
【Step1】安装Open MPI
注意: Open MPI 3.1.3 安装有些问题, 可以安装 Open MPI 3.1.2 或者 Open MPI 4.0.0.
【Step2】安装 TensorFlow
- pip install tensorflow 确保 g++-4.8.5 或者 g++-4.9
- 也可以用conda 安装
【Step3】安装 horovod
cpu
pip install horovod
GPUs with NCCL:
$ HOROVOD_GPU_ALLREDUCE=NCCL HOROVOD_GPU_BROADCAST=NCCL pip install horovod
Docker 文档:
https://horovod.readthedocs.io/en/stable/docker.html
https://raw.githubusercontent.com/horovod/horovod/master/Dockerfile.cpu
https://raw.githubusercontent.com/horovod/horovod/master/Dockerfile.gpu
CPU-Dockerfile
FROM ubuntu:18.04
ENV TENSORFLOW_VERSION=2.1.0
ENV PYTORCH_VERSION=1.4.0
ENV TORCHVISION_VERSION=0.5.0
ENV MXNET_VERSION=1.6.0
# Python 3.6 is supported by Ubuntu Bionic out of the box
ARG python=3.6
ENV PYTHON_VERSION=${python}
# Set default shell to /bin/bash
SHELL ["/bin/bash", "-cu"]
RUN apt-get update && apt-get install -y --allow-downgrades --allow-change-held-packages --no-install-recommends \
build-essential \
cmake \
g++-4.8 \
git \
curl \
vim \
wget \
ca-certificates \
libjpeg-dev \
libpng-dev \
python${PYTHON_VERSION} \
python${PYTHON_VERSION}-dev \
python${PYTHON_VERSION}-distutils \
librdmacm1 \
libibverbs1 \
ibverbs-providers
RUN ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python
RUN curl -O https://bootstrap.pypa.io/get-pip.py && \
python get-pip.py && \
rm get-pip.py
# Install TensorFlow, Keras, PyTorch and MXNet
RUN pip install future typing
RUN pip install numpy \
tensorflow==${TENSORFLOW_VERSION} \
keras \
h5py
RUN pip install torch==${PYTORCH_VERSION} torchvision==${TORCHVISION_VERSION}
RUN pip install mxnet==${MXNET_VERSION}
# Install Open MPI
RUN mkdir /tmp/openmpi && \
cd /tmp/openmpi && \
wget https://www.open-mpi.org/software/ompi/v4.0/downloads/openmpi-4.0.0.tar.gz && \
tar zxf openmpi-4.0.0.tar.gz && \
cd openmpi-4.0.0 && \
./configure --enable-orterun-prefix-by-default && \
make -j $(nproc) all && \
make install && \
ldconfig && \
rm -rf /tmp/openmpi
# Install Horovod
RUN HOROVOD_WITH_TENSORFLOW=1 HOROVOD_WITH_PYTORCH=1 HOROVOD_WITH_MXNET=1 \
pip install --no-cache-dir horovod
# Install OpenSSH for MPI to communicate between containers
RUN apt-get install -y --no-install-recommends openssh-client openssh-server && \
mkdir -p /var/run/sshd
# Allow OpenSSH to talk to containers without asking for confirmation
RUN cat /etc/ssh/ssh_config | grep -v StrictHostKeyChecking > /etc/ssh/ssh_config.new && \
echo " StrictHostKeyChecking no" >> /etc/ssh/ssh_config.new && \
mv /etc/ssh/ssh_config.new /etc/ssh/ssh_config
# Download examples
RUN apt-get install -y --no-install-recommends subversion && \
svn checkout https://github.com/horovod/horovod/trunk/examples && \
rm -rf /examples/.svn
WORKDIR "/examples"
GPU-Dockerfile
FROM nvidia/cuda:10.1-devel-ubuntu18.04
# TensorFlow version is tightly coupled to CUDA and cuDNN so it should be selected carefully
ENV TENSORFLOW_VERSION=2.1.0
ENV PYTORCH_VERSION=1.4.0
ENV TORCHVISION_VERSION=0.5.0
ENV CUDNN_VERSION=7.6.5.32-1+cuda10.1
ENV NCCL_VERSION=2.4.8-1+cuda10.1
ENV MXNET_VERSION=1.6.0
# Python 3.6 is supported by Ubuntu Bionic out of the box
ARG python=3.6
ENV PYTHON_VERSION=${python}
# Set default shell to /bin/bash
SHELL ["/bin/bash", "-cu"]
RUN apt-get update && apt-get install -y --allow-downgrades --allow-change-held-packages --no-install-recommends \
build-essential \
cmake \
g++-4.8 \
git \
curl \
vim \
wget \
ca-certificates \
libcudnn7=${CUDNN_VERSION} \
libnccl2=${NCCL_VERSION} \
libnccl-dev=${NCCL_VERSION} \
libjpeg-dev \
libpng-dev \
python${PYTHON_VERSION} \
python${PYTHON_VERSION}-dev \
python${PYTHON_VERSION}-distutils \
librdmacm1 \
libibverbs1 \
ibverbs-providers
RUN ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python
RUN curl -O https://bootstrap.pypa.io/get-pip.py && \
python get-pip.py && \
rm get-pip.py
# Install TensorFlow, Keras, PyTorch and MXNet
RUN pip install future typing
RUN pip install numpy \
tensorflow-gpu==${TENSORFLOW_VERSION} \
keras \
h5py
RUN pip install https://download.pytorch.org/whl/cu101/torch-${PYTORCH_VERSION}-$(python -c "import wheel.pep425tags as w; print('-'.join(w.get_supported(None)[0][:-1]))")-linux_x86_64.whl \
https://download.pytorch.org/whl/cu101/torchvision-${TORCHVISION_VERSION}-$(python -c "import wheel.pep425tags as w; print('-'.join(w.get_supported(None)[0][:-1]))")-linux_x86_64.whl
RUN pip install mxnet-cu101==${MXNET_VERSION}
# Install Open MPI
RUN mkdir /tmp/openmpi && \
cd /tmp/openmpi && \
wget https://www.open-mpi.org/software/ompi/v4.0/downloads/openmpi-4.0.0.tar.gz && \
tar zxf openmpi-4.0.0.tar.gz && \
cd openmpi-4.0.0 && \
./configure --enable-orterun-prefix-by-default && \
make -j $(nproc) all && \
make install && \
ldconfig && \
rm -rf /tmp/openmpi
# Install Horovod, temporarily using CUDA stubs
RUN ldconfig /usr/local/cuda/targets/x86_64-linux/lib/stubs && \
HOROVOD_GPU_OPERATIONS=NCCL HOROVOD_WITH_TENSORFLOW=1 HOROVOD_WITH_PYTORCH=1 HOROVOD_WITH_MXNET=1 \
pip install --no-cache-dir horovod && \
ldconfig
# Install OpenSSH for MPI to communicate between containers
RUN apt-get install -y --no-install-recommends openssh-client openssh-server && \
mkdir -p /var/run/sshd
# Allow OpenSSH to talk to containers without asking for confirmation
RUN cat /etc/ssh/ssh_config | grep -v StrictHostKeyChecking > /etc/ssh/ssh_config.new && \
echo " StrictHostKeyChecking no" >> /etc/ssh/ssh_config.new && \
mv /etc/ssh/ssh_config.new /etc/ssh/ssh_config
# Download examples
RUN apt-get install -y --no-install-recommends subversion && \
svn checkout https://github.com/horovod/horovod/trunk/examples && \
rm -rf /examples/.svn
WORKDIR "/examples"
Horovod Install的更多相关文章
- 机器学习分布式框架horovod安装 (Linux环境)
1.openmi 下载安装 下载连接: https://download.open-mpi.org/release/open-mpi/v4.0/openmpi-4.0.1.tar.gz 安装命令 1 ...
- 安装 openmpi 4.0 用于 horovod 编译
最近编译 horovod框架过程中,需要使用openmpi 4.0但是环境中的openmpi版本比较低,所以在手动安装openmpi4.0 用于编译,下面对过程进行简要记录,进行备忘: curl -O ...
- Horovod 分布式深度学习框架相关
最近需要 Horovod 相关的知识,在这里记录一下,进行备忘: 分布式训练,分为数据并行和模型并行两种: 模型并行:分布式系统中的不同GPU负责网络模型的不同部分.神经网络模型的不同网络层被分配到不 ...
- [源码解析] 深度学习分布式训练框架 horovod (19) --- kubeflow MPI-operator
[源码解析] 深度学习分布式训练框架 horovod (19) --- kubeflow MPI-operator 目录 [源码解析] 深度学习分布式训练框架 horovod (19) --- kub ...
- OEL上使用yum install oracle-validated 简化主机配置工作
环境:OEL 5.7 + Oracle 10.2.0.5 RAC 如果你正在用OEL(Oracle Enterprise Linux)系统部署Oracle,那么可以使用yum安装oracle-vali ...
- org.jboss.deployment.DeploymentException: Trying to install an already registered mbean: jboss.jca:service=LocalTxCM,name=egmasDS
17:34:37,235 INFO [Http11Protocol] Starting Coyote HTTP/1.1 on http-0.0.0.0-8080 17:34:37,281 INFO [ ...
- 如何使用yum 下载 一个 package ?如何使用 yum install package 但是保留 rpm 格式的 package ? 或者又 如何通过yum 中已经安装的package 导出它,即yum导出rpm?
注意 RHEL5 和 RHEL6 的不同 How to use yum to download a package without installing it Solution Verified - ...
- Install and Configure SharePoint 2013 Workflow
这篇文章主要briefly introduce the Install and configure SharePoint 2013 Workflow. Microsoft 推出了新的Workflow ...
- Basic Tutorials of Redis(1) - Install And Configure Redis
Nowaday, Redis became more and more popular , many projects use it in the cache module and the store ...
随机推荐
- 为什么ElasticSearch比MySQL更适合全文索引
熟悉 MySQL 的同学一定都知道,MySQL 对于复杂条件查询的支持并不好.MySQL 最多使用一个条件涉及的索引来过滤,然后剩余的条件只能在遍历行过程中进行内存过滤,对这个过程不了解的同学可以先行 ...
- Vue为何采用异步渲染
Vue为何采用异步渲染 Vue在更新DOM时是异步执行的,只要侦听到数据变化,Vue将开启一个队列,并缓冲在同一事件循环中发生的所有数据变更,如果同一个watcher被多次触发,只会被推入到队列中一次 ...
- 安装vue脚手架
npm install -g @vue/cli 创建项目 vue create freemall
- LiteOS:SpinLock自旋锁及LockDep死锁检测
摘要:除了多核的自旋锁机制,本文会介绍下LiteOS 5.0引入的LockDep死锁检测特性. 2020年12月发布的LiteOS 5.0推出了全新的内核,支持SMP多核调度功能.想学习SMP多核调度 ...
- Go语言实现布谷鸟过滤器
转载请声明出处哦~,本篇文章发布于luozhiyun的博客:https://www.luozhiyun.com/archives/453 介绍 在我们工作中,如果遇到如网页 URL 去重.垃圾邮件识别 ...
- pytorch(16)损失函数(二)
5和6是在数据回归中用的较多的损失函数 5. nn.L1Loss 功能:计算inputs与target之差的绝对值 代码: nn.L1Loss(reduction='mean') 公式: \[l_n ...
- 部分rpm包总结描述
acl-2.2.51-15.el7.x86_64 Commands for Manipulating POSIX(可移植操作系统接口 of unix) Access Control Lists.有ge ...
- java安全初学之动态代理
前言:作为安全人员,代理大家用的都很多,那什么是java中的动态代理呢?事实上,java中的"动态"也就意味着使用了反射,因此动态代理是基于反射机制的一种代理模式. 简介: 代理是 ...
- 关于 FreeBSD 老版本如何安装软件
关于 FreeBSD 不被支持版本如何安装软件: ALLOW_UNSUPPORTED_SYSTEM=yes写到/etc/ make.conf 如果提示没有make.conf 请手动新建一个文 ...
- EF Core3.0+ 通过拦截器实现读写分离与SQL日志记录
前言 本文主要是讲解EF Core3.0+ 通过拦截器实现读写分离与SQL日志记录 注意拦截器只有EF Core3.0+ 支持,2.1请考虑上下文工厂的形式实现. 说点题外话.. 一晃又大半年没更新技 ...