Horovod Install
Horovod documentation
安装
【Step1】安装Open MPI
注意: Open MPI 3.1.3 安装有些问题, 可以安装 Open MPI 3.1.2 或者 Open MPI 4.0.0.
【Step2】安装 TensorFlow
- pip install tensorflow 确保 g++-4.8.5 或者 g++-4.9
- 也可以用conda 安装
【Step3】安装 horovod
cpu
pip install horovod
GPUs with NCCL:
$ HOROVOD_GPU_ALLREDUCE=NCCL HOROVOD_GPU_BROADCAST=NCCL pip install horovod
Docker 文档:
https://horovod.readthedocs.io/en/stable/docker.html
https://raw.githubusercontent.com/horovod/horovod/master/Dockerfile.cpu
https://raw.githubusercontent.com/horovod/horovod/master/Dockerfile.gpu
CPU-Dockerfile
FROM ubuntu:18.04
ENV TENSORFLOW_VERSION=2.1.0
ENV PYTORCH_VERSION=1.4.0
ENV TORCHVISION_VERSION=0.5.0
ENV MXNET_VERSION=1.6.0
# Python 3.6 is supported by Ubuntu Bionic out of the box
ARG python=3.6
ENV PYTHON_VERSION=${python}
# Set default shell to /bin/bash
SHELL ["/bin/bash", "-cu"]
RUN apt-get update && apt-get install -y --allow-downgrades --allow-change-held-packages --no-install-recommends \
build-essential \
cmake \
g++-4.8 \
git \
curl \
vim \
wget \
ca-certificates \
libjpeg-dev \
libpng-dev \
python${PYTHON_VERSION} \
python${PYTHON_VERSION}-dev \
python${PYTHON_VERSION}-distutils \
librdmacm1 \
libibverbs1 \
ibverbs-providers
RUN ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python
RUN curl -O https://bootstrap.pypa.io/get-pip.py && \
python get-pip.py && \
rm get-pip.py
# Install TensorFlow, Keras, PyTorch and MXNet
RUN pip install future typing
RUN pip install numpy \
tensorflow==${TENSORFLOW_VERSION} \
keras \
h5py
RUN pip install torch==${PYTORCH_VERSION} torchvision==${TORCHVISION_VERSION}
RUN pip install mxnet==${MXNET_VERSION}
# Install Open MPI
RUN mkdir /tmp/openmpi && \
cd /tmp/openmpi && \
wget https://www.open-mpi.org/software/ompi/v4.0/downloads/openmpi-4.0.0.tar.gz && \
tar zxf openmpi-4.0.0.tar.gz && \
cd openmpi-4.0.0 && \
./configure --enable-orterun-prefix-by-default && \
make -j $(nproc) all && \
make install && \
ldconfig && \
rm -rf /tmp/openmpi
# Install Horovod
RUN HOROVOD_WITH_TENSORFLOW=1 HOROVOD_WITH_PYTORCH=1 HOROVOD_WITH_MXNET=1 \
pip install --no-cache-dir horovod
# Install OpenSSH for MPI to communicate between containers
RUN apt-get install -y --no-install-recommends openssh-client openssh-server && \
mkdir -p /var/run/sshd
# Allow OpenSSH to talk to containers without asking for confirmation
RUN cat /etc/ssh/ssh_config | grep -v StrictHostKeyChecking > /etc/ssh/ssh_config.new && \
echo " StrictHostKeyChecking no" >> /etc/ssh/ssh_config.new && \
mv /etc/ssh/ssh_config.new /etc/ssh/ssh_config
# Download examples
RUN apt-get install -y --no-install-recommends subversion && \
svn checkout https://github.com/horovod/horovod/trunk/examples && \
rm -rf /examples/.svn
WORKDIR "/examples"
GPU-Dockerfile
FROM nvidia/cuda:10.1-devel-ubuntu18.04
# TensorFlow version is tightly coupled to CUDA and cuDNN so it should be selected carefully
ENV TENSORFLOW_VERSION=2.1.0
ENV PYTORCH_VERSION=1.4.0
ENV TORCHVISION_VERSION=0.5.0
ENV CUDNN_VERSION=7.6.5.32-1+cuda10.1
ENV NCCL_VERSION=2.4.8-1+cuda10.1
ENV MXNET_VERSION=1.6.0
# Python 3.6 is supported by Ubuntu Bionic out of the box
ARG python=3.6
ENV PYTHON_VERSION=${python}
# Set default shell to /bin/bash
SHELL ["/bin/bash", "-cu"]
RUN apt-get update && apt-get install -y --allow-downgrades --allow-change-held-packages --no-install-recommends \
build-essential \
cmake \
g++-4.8 \
git \
curl \
vim \
wget \
ca-certificates \
libcudnn7=${CUDNN_VERSION} \
libnccl2=${NCCL_VERSION} \
libnccl-dev=${NCCL_VERSION} \
libjpeg-dev \
libpng-dev \
python${PYTHON_VERSION} \
python${PYTHON_VERSION}-dev \
python${PYTHON_VERSION}-distutils \
librdmacm1 \
libibverbs1 \
ibverbs-providers
RUN ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python
RUN curl -O https://bootstrap.pypa.io/get-pip.py && \
python get-pip.py && \
rm get-pip.py
# Install TensorFlow, Keras, PyTorch and MXNet
RUN pip install future typing
RUN pip install numpy \
tensorflow-gpu==${TENSORFLOW_VERSION} \
keras \
h5py
RUN pip install https://download.pytorch.org/whl/cu101/torch-${PYTORCH_VERSION}-$(python -c "import wheel.pep425tags as w; print('-'.join(w.get_supported(None)[0][:-1]))")-linux_x86_64.whl \
https://download.pytorch.org/whl/cu101/torchvision-${TORCHVISION_VERSION}-$(python -c "import wheel.pep425tags as w; print('-'.join(w.get_supported(None)[0][:-1]))")-linux_x86_64.whl
RUN pip install mxnet-cu101==${MXNET_VERSION}
# Install Open MPI
RUN mkdir /tmp/openmpi && \
cd /tmp/openmpi && \
wget https://www.open-mpi.org/software/ompi/v4.0/downloads/openmpi-4.0.0.tar.gz && \
tar zxf openmpi-4.0.0.tar.gz && \
cd openmpi-4.0.0 && \
./configure --enable-orterun-prefix-by-default && \
make -j $(nproc) all && \
make install && \
ldconfig && \
rm -rf /tmp/openmpi
# Install Horovod, temporarily using CUDA stubs
RUN ldconfig /usr/local/cuda/targets/x86_64-linux/lib/stubs && \
HOROVOD_GPU_OPERATIONS=NCCL HOROVOD_WITH_TENSORFLOW=1 HOROVOD_WITH_PYTORCH=1 HOROVOD_WITH_MXNET=1 \
pip install --no-cache-dir horovod && \
ldconfig
# Install OpenSSH for MPI to communicate between containers
RUN apt-get install -y --no-install-recommends openssh-client openssh-server && \
mkdir -p /var/run/sshd
# Allow OpenSSH to talk to containers without asking for confirmation
RUN cat /etc/ssh/ssh_config | grep -v StrictHostKeyChecking > /etc/ssh/ssh_config.new && \
echo " StrictHostKeyChecking no" >> /etc/ssh/ssh_config.new && \
mv /etc/ssh/ssh_config.new /etc/ssh/ssh_config
# Download examples
RUN apt-get install -y --no-install-recommends subversion && \
svn checkout https://github.com/horovod/horovod/trunk/examples && \
rm -rf /examples/.svn
WORKDIR "/examples"
Horovod Install的更多相关文章
- 机器学习分布式框架horovod安装 (Linux环境)
1.openmi 下载安装 下载连接: https://download.open-mpi.org/release/open-mpi/v4.0/openmpi-4.0.1.tar.gz 安装命令 1 ...
- 安装 openmpi 4.0 用于 horovod 编译
最近编译 horovod框架过程中,需要使用openmpi 4.0但是环境中的openmpi版本比较低,所以在手动安装openmpi4.0 用于编译,下面对过程进行简要记录,进行备忘: curl -O ...
- Horovod 分布式深度学习框架相关
最近需要 Horovod 相关的知识,在这里记录一下,进行备忘: 分布式训练,分为数据并行和模型并行两种: 模型并行:分布式系统中的不同GPU负责网络模型的不同部分.神经网络模型的不同网络层被分配到不 ...
- [源码解析] 深度学习分布式训练框架 horovod (19) --- kubeflow MPI-operator
[源码解析] 深度学习分布式训练框架 horovod (19) --- kubeflow MPI-operator 目录 [源码解析] 深度学习分布式训练框架 horovod (19) --- kub ...
- OEL上使用yum install oracle-validated 简化主机配置工作
环境:OEL 5.7 + Oracle 10.2.0.5 RAC 如果你正在用OEL(Oracle Enterprise Linux)系统部署Oracle,那么可以使用yum安装oracle-vali ...
- org.jboss.deployment.DeploymentException: Trying to install an already registered mbean: jboss.jca:service=LocalTxCM,name=egmasDS
17:34:37,235 INFO [Http11Protocol] Starting Coyote HTTP/1.1 on http-0.0.0.0-8080 17:34:37,281 INFO [ ...
- 如何使用yum 下载 一个 package ?如何使用 yum install package 但是保留 rpm 格式的 package ? 或者又 如何通过yum 中已经安装的package 导出它,即yum导出rpm?
注意 RHEL5 和 RHEL6 的不同 How to use yum to download a package without installing it Solution Verified - ...
- Install and Configure SharePoint 2013 Workflow
这篇文章主要briefly introduce the Install and configure SharePoint 2013 Workflow. Microsoft 推出了新的Workflow ...
- Basic Tutorials of Redis(1) - Install And Configure Redis
Nowaday, Redis became more and more popular , many projects use it in the cache module and the store ...
随机推荐
- 020_CSS3
目录 如何学习CSS 什么是CSS 发展史 快速入门 css的优势 三种CSS导入方式 拓展:外部样式两种写法 选择器 基本选择器 层次选择器 结构伪类选择器 属性选择器 美化网页元素 为什么要美化网 ...
- 生产者和消费者问题(synchronized、Lock)
1.synchronized的生产者和消费者 synchronized是锁住对象 this.wait()释放了锁 并等待 this.notify()随机通知并唤醒同一个对象中的一个线程 this.no ...
- 运行maven遇到的坑,差点崩溃了。
参考链接1:https://blog.csdn.net/lch_cn/article/details/8225448/ 参考链接2:https://jingyan.baidu.com/article/ ...
- 解决bs4在python中出现“ImportError: cannot import name ‘HTMLParseError‘”错误
在使用BeautifulSoup4时候出现了ImportError: cannot import name 'HTMLParseError'的错误. 根本原因是BeautifulSoup在4.4.0以 ...
- centos7.5+nginx+php急速配置
centos7.5+nginx+php急速配置 centosnginxphp 更新系统以及添加源 yum update yum -y install epel-release 安装php以及配置 yu ...
- 后端程序员之路 42、Semaphore
前面学习了Pthreads,了解了线程和线程同步,而同步这个东西,与信号量是密不可分的.下面讨论的主要是Pthreads里的semaphore.h,而不是sys/sem.h [Linux]线程同步之信 ...
- monkey稳定性测试的步骤及策略
1.adb的作用是什么?adb的全称:android debug bridge 安卓调试桥梁,包含在 Android SDK 平台工具软件包中.通过该命令与设备进行通信,以便进行调试adb可以同时管理 ...
- 剑指 Offer 13. 机器人的运动范围 + 深搜 + 递归
剑指 Offer 13. 机器人的运动范围 题目链接 package com.walegarrett.offer; /** * @Author WaleGarrett * @Date 2020/12/ ...
- JVM-对象及对象内存布局
目录 前言 类与对象 对象类二分模型 对象 对象内存布局 JOL工具 对象头 Mark Word 类型句柄 对象头与锁膨胀 无锁 偏向锁 轻量级锁 重量级锁 重量级锁降级 实例数据 填充 对象生命周期 ...
- ES系列(一):编译准备与server启动过程解析
ES作为强大的和流行的搜索引擎服务组件,为我们提供了方便的和高性能的搜索服务.在实际应用中也是用得比较爽,但如果能够更深入一点.虽然网上有许多的文章已经完整说明,ES是如何如何做到高性能,如何做到高可 ...