Horovod documentation

安装

【Step1】安装Open MPI

注意: Open MPI 3.1.3 安装有些问题, 可以安装 Open MPI 3.1.2 或者 Open MPI 4.0.0.

【Step2】安装 TensorFlow

  • pip install tensorflow 确保 g++-4.8.5 或者 g++-4.9
  • 也可以用conda 安装

【Step3】安装 horovod

cpu

pip install horovod

GPUs with NCCL:

$ HOROVOD_GPU_ALLREDUCE=NCCL HOROVOD_GPU_BROADCAST=NCCL pip install horovod

Docker 文档:

https://horovod.readthedocs.io/en/stable/docker.html

https://raw.githubusercontent.com/horovod/horovod/master/Dockerfile.cpu
https://raw.githubusercontent.com/horovod/horovod/master/Dockerfile.gpu

CPU-Dockerfile

FROM ubuntu:18.04

ENV TENSORFLOW_VERSION=2.1.0
ENV PYTORCH_VERSION=1.4.0
ENV TORCHVISION_VERSION=0.5.0
ENV MXNET_VERSION=1.6.0 # Python 3.6 is supported by Ubuntu Bionic out of the box
ARG python=3.6
ENV PYTHON_VERSION=${python} # Set default shell to /bin/bash
SHELL ["/bin/bash", "-cu"] RUN apt-get update && apt-get install -y --allow-downgrades --allow-change-held-packages --no-install-recommends \
build-essential \
cmake \
g++-4.8 \
git \
curl \
vim \
wget \
ca-certificates \
libjpeg-dev \
libpng-dev \
python${PYTHON_VERSION} \
python${PYTHON_VERSION}-dev \
python${PYTHON_VERSION}-distutils \
librdmacm1 \
libibverbs1 \
ibverbs-providers RUN ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python RUN curl -O https://bootstrap.pypa.io/get-pip.py && \
python get-pip.py && \
rm get-pip.py # Install TensorFlow, Keras, PyTorch and MXNet
RUN pip install future typing
RUN pip install numpy \
tensorflow==${TENSORFLOW_VERSION} \
keras \
h5py
RUN pip install torch==${PYTORCH_VERSION} torchvision==${TORCHVISION_VERSION}
RUN pip install mxnet==${MXNET_VERSION} # Install Open MPI
RUN mkdir /tmp/openmpi && \
cd /tmp/openmpi && \
wget https://www.open-mpi.org/software/ompi/v4.0/downloads/openmpi-4.0.0.tar.gz && \
tar zxf openmpi-4.0.0.tar.gz && \
cd openmpi-4.0.0 && \
./configure --enable-orterun-prefix-by-default && \
make -j $(nproc) all && \
make install && \
ldconfig && \
rm -rf /tmp/openmpi # Install Horovod
RUN HOROVOD_WITH_TENSORFLOW=1 HOROVOD_WITH_PYTORCH=1 HOROVOD_WITH_MXNET=1 \
pip install --no-cache-dir horovod # Install OpenSSH for MPI to communicate between containers
RUN apt-get install -y --no-install-recommends openssh-client openssh-server && \
mkdir -p /var/run/sshd # Allow OpenSSH to talk to containers without asking for confirmation
RUN cat /etc/ssh/ssh_config | grep -v StrictHostKeyChecking > /etc/ssh/ssh_config.new && \
echo " StrictHostKeyChecking no" >> /etc/ssh/ssh_config.new && \
mv /etc/ssh/ssh_config.new /etc/ssh/ssh_config # Download examples
RUN apt-get install -y --no-install-recommends subversion && \
svn checkout https://github.com/horovod/horovod/trunk/examples && \
rm -rf /examples/.svn WORKDIR "/examples"

GPU-Dockerfile

FROM nvidia/cuda:10.1-devel-ubuntu18.04

# TensorFlow version is tightly coupled to CUDA and cuDNN so it should be selected carefully
ENV TENSORFLOW_VERSION=2.1.0
ENV PYTORCH_VERSION=1.4.0
ENV TORCHVISION_VERSION=0.5.0
ENV CUDNN_VERSION=7.6.5.32-1+cuda10.1
ENV NCCL_VERSION=2.4.8-1+cuda10.1
ENV MXNET_VERSION=1.6.0 # Python 3.6 is supported by Ubuntu Bionic out of the box
ARG python=3.6
ENV PYTHON_VERSION=${python} # Set default shell to /bin/bash
SHELL ["/bin/bash", "-cu"] RUN apt-get update && apt-get install -y --allow-downgrades --allow-change-held-packages --no-install-recommends \
build-essential \
cmake \
g++-4.8 \
git \
curl \
vim \
wget \
ca-certificates \
libcudnn7=${CUDNN_VERSION} \
libnccl2=${NCCL_VERSION} \
libnccl-dev=${NCCL_VERSION} \
libjpeg-dev \
libpng-dev \
python${PYTHON_VERSION} \
python${PYTHON_VERSION}-dev \
python${PYTHON_VERSION}-distutils \
librdmacm1 \
libibverbs1 \
ibverbs-providers RUN ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python RUN curl -O https://bootstrap.pypa.io/get-pip.py && \
python get-pip.py && \
rm get-pip.py # Install TensorFlow, Keras, PyTorch and MXNet
RUN pip install future typing
RUN pip install numpy \
tensorflow-gpu==${TENSORFLOW_VERSION} \
keras \
h5py RUN pip install https://download.pytorch.org/whl/cu101/torch-${PYTORCH_VERSION}-$(python -c "import wheel.pep425tags as w; print('-'.join(w.get_supported(None)[0][:-1]))")-linux_x86_64.whl \
https://download.pytorch.org/whl/cu101/torchvision-${TORCHVISION_VERSION}-$(python -c "import wheel.pep425tags as w; print('-'.join(w.get_supported(None)[0][:-1]))")-linux_x86_64.whl
RUN pip install mxnet-cu101==${MXNET_VERSION} # Install Open MPI
RUN mkdir /tmp/openmpi && \
cd /tmp/openmpi && \
wget https://www.open-mpi.org/software/ompi/v4.0/downloads/openmpi-4.0.0.tar.gz && \
tar zxf openmpi-4.0.0.tar.gz && \
cd openmpi-4.0.0 && \
./configure --enable-orterun-prefix-by-default && \
make -j $(nproc) all && \
make install && \
ldconfig && \
rm -rf /tmp/openmpi # Install Horovod, temporarily using CUDA stubs
RUN ldconfig /usr/local/cuda/targets/x86_64-linux/lib/stubs && \
HOROVOD_GPU_OPERATIONS=NCCL HOROVOD_WITH_TENSORFLOW=1 HOROVOD_WITH_PYTORCH=1 HOROVOD_WITH_MXNET=1 \
pip install --no-cache-dir horovod && \
ldconfig # Install OpenSSH for MPI to communicate between containers
RUN apt-get install -y --no-install-recommends openssh-client openssh-server && \
mkdir -p /var/run/sshd # Allow OpenSSH to talk to containers without asking for confirmation
RUN cat /etc/ssh/ssh_config | grep -v StrictHostKeyChecking > /etc/ssh/ssh_config.new && \
echo " StrictHostKeyChecking no" >> /etc/ssh/ssh_config.new && \
mv /etc/ssh/ssh_config.new /etc/ssh/ssh_config # Download examples
RUN apt-get install -y --no-install-recommends subversion && \
svn checkout https://github.com/horovod/horovod/trunk/examples && \
rm -rf /examples/.svn WORKDIR "/examples"

Horovod Install的更多相关文章

  1. 机器学习分布式框架horovod安装 (Linux环境)

    1.openmi 下载安装 下载连接: https://download.open-mpi.org/release/open-mpi/v4.0/openmpi-4.0.1.tar.gz 安装命令 1 ...

  2. 安装 openmpi 4.0 用于 horovod 编译

    最近编译 horovod框架过程中,需要使用openmpi 4.0但是环境中的openmpi版本比较低,所以在手动安装openmpi4.0 用于编译,下面对过程进行简要记录,进行备忘: curl -O ...

  3. Horovod 分布式深度学习框架相关

    最近需要 Horovod 相关的知识,在这里记录一下,进行备忘: 分布式训练,分为数据并行和模型并行两种: 模型并行:分布式系统中的不同GPU负责网络模型的不同部分.神经网络模型的不同网络层被分配到不 ...

  4. [源码解析] 深度学习分布式训练框架 horovod (19) --- kubeflow MPI-operator

    [源码解析] 深度学习分布式训练框架 horovod (19) --- kubeflow MPI-operator 目录 [源码解析] 深度学习分布式训练框架 horovod (19) --- kub ...

  5. OEL上使用yum install oracle-validated 简化主机配置工作

    环境:OEL 5.7 + Oracle 10.2.0.5 RAC 如果你正在用OEL(Oracle Enterprise Linux)系统部署Oracle,那么可以使用yum安装oracle-vali ...

  6. org.jboss.deployment.DeploymentException: Trying to install an already registered mbean: jboss.jca:service=LocalTxCM,name=egmasDS

    17:34:37,235 INFO [Http11Protocol] Starting Coyote HTTP/1.1 on http-0.0.0.0-8080 17:34:37,281 INFO [ ...

  7. 如何使用yum 下载 一个 package ?如何使用 yum install package 但是保留 rpm 格式的 package ? 或者又 如何通过yum 中已经安装的package 导出它,即yum导出rpm?

    注意 RHEL5 和 RHEL6 的不同 How to use yum to download a package without installing it Solution Verified - ...

  8. Install and Configure SharePoint 2013 Workflow

    这篇文章主要briefly introduce the Install and configure SharePoint 2013 Workflow. Microsoft 推出了新的Workflow ...

  9. Basic Tutorials of Redis(1) - Install And Configure Redis

    Nowaday, Redis became more and more popular , many projects use it in the cache module and the store ...

随机推荐

  1. Python算法_爬楼梯(08)

    假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2输出: 2解释: 有两种方 ...

  2. spring boot插件开发实战和原理

    本文转载自spring boot插件开发实战和原理 实战:编写spring boot插件 为什么要编写boot插件 因为我们在开发的时候需要提供一些共同的功能,所以我们编写个共同的jar包.开发人员在 ...

  3. dategrip的使用技巧

    原文链接:https://blog.csdn.net/weixin_44421461/article/details/109541903 数据表复制,可以直接用sql语句 1.复制表结构及数据到新表 ...

  4. 3分钟学会如何上手supervisor看门狗

    软硬件环境 centos7.6.1810 64bit cat /etc/redhat-release #查看系统版本 supervisor 3.4.0 python 2.7.5 supervisor简 ...

  5. Hyperf-JsonRpc使用

    Hyperf-JsonRpc使用 标签(空格分隔): php 安装扩展包 composer require hyperf/json-rpc composer require hyperf/rpc-se ...

  6. Java基本概念:接口

    一.简介 描述: 普通类只有具体实现,抽象类具体实现和规范都有,接口只有规范! 接口就是比抽象类还抽象的抽象类,可以更加规范的对子类进行约束,全面专业地实现了规范和具体实现的分离. 抽象类还提供某些具 ...

  7. 一篇文章彻底弄懂Android-MVVM

    转: 一篇文章彻底弄懂Android-MVVM 在学习一个技术之前,我们首先要搞清为什么要用它.用它以后会有什么好处,这样我们才能有兴趣的学习下去. 一.为什么要用MVVM? 我为什么要用这个什么MV ...

  8. Hi3559AV100外接UVC/MJPEG相机实时采图设计(三):V4L2接口通过MPP平台输出

    可以首先参考前面两篇文章: Hi3559AV100外接UVC/MJPEG相机实时采图设计(一):Linux USB摄像头驱动分析: https://www.cnblogs.com/iFrank/p/1 ...

  9. Java 中为什么要设计包装类

    尽人事,听天命.博主东南大学硕士在读,热爱健身和篮球,乐于分享技术相关的所见所得,关注公众号 @ 飞天小牛肉,第一时间获取文章更新,成长的路上我们一起进步 本文已收录于 「CS-Wiki」Gitee ...

  10. Prometheus + Spring Boot 应用监控

    1.  Prometheus是什么 Prometheus是一个具有活跃生态系统的开源系统监控和告警工具包.一言以蔽之,它是一套开源监控解决方案. Prometheus主要特性: 多维数据模型,其中包含 ...