Horovod documentation

安装

【Step1】安装Open MPI

注意: Open MPI 3.1.3 安装有些问题, 可以安装 Open MPI 3.1.2 或者 Open MPI 4.0.0.

【Step2】安装 TensorFlow

  • pip install tensorflow 确保 g++-4.8.5 或者 g++-4.9
  • 也可以用conda 安装

【Step3】安装 horovod

cpu

pip install horovod

GPUs with NCCL:

$ HOROVOD_GPU_ALLREDUCE=NCCL HOROVOD_GPU_BROADCAST=NCCL pip install horovod

Docker 文档:

https://horovod.readthedocs.io/en/stable/docker.html

https://raw.githubusercontent.com/horovod/horovod/master/Dockerfile.cpu
https://raw.githubusercontent.com/horovod/horovod/master/Dockerfile.gpu

CPU-Dockerfile

FROM ubuntu:18.04

ENV TENSORFLOW_VERSION=2.1.0
ENV PYTORCH_VERSION=1.4.0
ENV TORCHVISION_VERSION=0.5.0
ENV MXNET_VERSION=1.6.0 # Python 3.6 is supported by Ubuntu Bionic out of the box
ARG python=3.6
ENV PYTHON_VERSION=${python} # Set default shell to /bin/bash
SHELL ["/bin/bash", "-cu"] RUN apt-get update && apt-get install -y --allow-downgrades --allow-change-held-packages --no-install-recommends \
build-essential \
cmake \
g++-4.8 \
git \
curl \
vim \
wget \
ca-certificates \
libjpeg-dev \
libpng-dev \
python${PYTHON_VERSION} \
python${PYTHON_VERSION}-dev \
python${PYTHON_VERSION}-distutils \
librdmacm1 \
libibverbs1 \
ibverbs-providers RUN ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python RUN curl -O https://bootstrap.pypa.io/get-pip.py && \
python get-pip.py && \
rm get-pip.py # Install TensorFlow, Keras, PyTorch and MXNet
RUN pip install future typing
RUN pip install numpy \
tensorflow==${TENSORFLOW_VERSION} \
keras \
h5py
RUN pip install torch==${PYTORCH_VERSION} torchvision==${TORCHVISION_VERSION}
RUN pip install mxnet==${MXNET_VERSION} # Install Open MPI
RUN mkdir /tmp/openmpi && \
cd /tmp/openmpi && \
wget https://www.open-mpi.org/software/ompi/v4.0/downloads/openmpi-4.0.0.tar.gz && \
tar zxf openmpi-4.0.0.tar.gz && \
cd openmpi-4.0.0 && \
./configure --enable-orterun-prefix-by-default && \
make -j $(nproc) all && \
make install && \
ldconfig && \
rm -rf /tmp/openmpi # Install Horovod
RUN HOROVOD_WITH_TENSORFLOW=1 HOROVOD_WITH_PYTORCH=1 HOROVOD_WITH_MXNET=1 \
pip install --no-cache-dir horovod # Install OpenSSH for MPI to communicate between containers
RUN apt-get install -y --no-install-recommends openssh-client openssh-server && \
mkdir -p /var/run/sshd # Allow OpenSSH to talk to containers without asking for confirmation
RUN cat /etc/ssh/ssh_config | grep -v StrictHostKeyChecking > /etc/ssh/ssh_config.new && \
echo " StrictHostKeyChecking no" >> /etc/ssh/ssh_config.new && \
mv /etc/ssh/ssh_config.new /etc/ssh/ssh_config # Download examples
RUN apt-get install -y --no-install-recommends subversion && \
svn checkout https://github.com/horovod/horovod/trunk/examples && \
rm -rf /examples/.svn WORKDIR "/examples"

GPU-Dockerfile

FROM nvidia/cuda:10.1-devel-ubuntu18.04

# TensorFlow version is tightly coupled to CUDA and cuDNN so it should be selected carefully
ENV TENSORFLOW_VERSION=2.1.0
ENV PYTORCH_VERSION=1.4.0
ENV TORCHVISION_VERSION=0.5.0
ENV CUDNN_VERSION=7.6.5.32-1+cuda10.1
ENV NCCL_VERSION=2.4.8-1+cuda10.1
ENV MXNET_VERSION=1.6.0 # Python 3.6 is supported by Ubuntu Bionic out of the box
ARG python=3.6
ENV PYTHON_VERSION=${python} # Set default shell to /bin/bash
SHELL ["/bin/bash", "-cu"] RUN apt-get update && apt-get install -y --allow-downgrades --allow-change-held-packages --no-install-recommends \
build-essential \
cmake \
g++-4.8 \
git \
curl \
vim \
wget \
ca-certificates \
libcudnn7=${CUDNN_VERSION} \
libnccl2=${NCCL_VERSION} \
libnccl-dev=${NCCL_VERSION} \
libjpeg-dev \
libpng-dev \
python${PYTHON_VERSION} \
python${PYTHON_VERSION}-dev \
python${PYTHON_VERSION}-distutils \
librdmacm1 \
libibverbs1 \
ibverbs-providers RUN ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python RUN curl -O https://bootstrap.pypa.io/get-pip.py && \
python get-pip.py && \
rm get-pip.py # Install TensorFlow, Keras, PyTorch and MXNet
RUN pip install future typing
RUN pip install numpy \
tensorflow-gpu==${TENSORFLOW_VERSION} \
keras \
h5py RUN pip install https://download.pytorch.org/whl/cu101/torch-${PYTORCH_VERSION}-$(python -c "import wheel.pep425tags as w; print('-'.join(w.get_supported(None)[0][:-1]))")-linux_x86_64.whl \
https://download.pytorch.org/whl/cu101/torchvision-${TORCHVISION_VERSION}-$(python -c "import wheel.pep425tags as w; print('-'.join(w.get_supported(None)[0][:-1]))")-linux_x86_64.whl
RUN pip install mxnet-cu101==${MXNET_VERSION} # Install Open MPI
RUN mkdir /tmp/openmpi && \
cd /tmp/openmpi && \
wget https://www.open-mpi.org/software/ompi/v4.0/downloads/openmpi-4.0.0.tar.gz && \
tar zxf openmpi-4.0.0.tar.gz && \
cd openmpi-4.0.0 && \
./configure --enable-orterun-prefix-by-default && \
make -j $(nproc) all && \
make install && \
ldconfig && \
rm -rf /tmp/openmpi # Install Horovod, temporarily using CUDA stubs
RUN ldconfig /usr/local/cuda/targets/x86_64-linux/lib/stubs && \
HOROVOD_GPU_OPERATIONS=NCCL HOROVOD_WITH_TENSORFLOW=1 HOROVOD_WITH_PYTORCH=1 HOROVOD_WITH_MXNET=1 \
pip install --no-cache-dir horovod && \
ldconfig # Install OpenSSH for MPI to communicate between containers
RUN apt-get install -y --no-install-recommends openssh-client openssh-server && \
mkdir -p /var/run/sshd # Allow OpenSSH to talk to containers without asking for confirmation
RUN cat /etc/ssh/ssh_config | grep -v StrictHostKeyChecking > /etc/ssh/ssh_config.new && \
echo " StrictHostKeyChecking no" >> /etc/ssh/ssh_config.new && \
mv /etc/ssh/ssh_config.new /etc/ssh/ssh_config # Download examples
RUN apt-get install -y --no-install-recommends subversion && \
svn checkout https://github.com/horovod/horovod/trunk/examples && \
rm -rf /examples/.svn WORKDIR "/examples"

Horovod Install的更多相关文章

  1. 机器学习分布式框架horovod安装 (Linux环境)

    1.openmi 下载安装 下载连接: https://download.open-mpi.org/release/open-mpi/v4.0/openmpi-4.0.1.tar.gz 安装命令 1 ...

  2. 安装 openmpi 4.0 用于 horovod 编译

    最近编译 horovod框架过程中,需要使用openmpi 4.0但是环境中的openmpi版本比较低,所以在手动安装openmpi4.0 用于编译,下面对过程进行简要记录,进行备忘: curl -O ...

  3. Horovod 分布式深度学习框架相关

    最近需要 Horovod 相关的知识,在这里记录一下,进行备忘: 分布式训练,分为数据并行和模型并行两种: 模型并行:分布式系统中的不同GPU负责网络模型的不同部分.神经网络模型的不同网络层被分配到不 ...

  4. [源码解析] 深度学习分布式训练框架 horovod (19) --- kubeflow MPI-operator

    [源码解析] 深度学习分布式训练框架 horovod (19) --- kubeflow MPI-operator 目录 [源码解析] 深度学习分布式训练框架 horovod (19) --- kub ...

  5. OEL上使用yum install oracle-validated 简化主机配置工作

    环境:OEL 5.7 + Oracle 10.2.0.5 RAC 如果你正在用OEL(Oracle Enterprise Linux)系统部署Oracle,那么可以使用yum安装oracle-vali ...

  6. org.jboss.deployment.DeploymentException: Trying to install an already registered mbean: jboss.jca:service=LocalTxCM,name=egmasDS

    17:34:37,235 INFO [Http11Protocol] Starting Coyote HTTP/1.1 on http-0.0.0.0-8080 17:34:37,281 INFO [ ...

  7. 如何使用yum 下载 一个 package ?如何使用 yum install package 但是保留 rpm 格式的 package ? 或者又 如何通过yum 中已经安装的package 导出它,即yum导出rpm?

    注意 RHEL5 和 RHEL6 的不同 How to use yum to download a package without installing it Solution Verified - ...

  8. Install and Configure SharePoint 2013 Workflow

    这篇文章主要briefly introduce the Install and configure SharePoint 2013 Workflow. Microsoft 推出了新的Workflow ...

  9. Basic Tutorials of Redis(1) - Install And Configure Redis

    Nowaday, Redis became more and more popular , many projects use it in the cache module and the store ...

随机推荐

  1. restful风格的理解

    简而言之,就是不同的命令响应不同的操作: 关注点在url中的不同参数,是因为不同的参数才使得不同的method去对应的不同的操作.

  2. Django框架的forms组件与一些补充

    目录 一.多对多的三种创建方式 1. 全自动 2. 纯手撸(了解) 3. 半自动(强烈推荐) 二.forms组件 1. 如何使用forms组件 2. 使用forms组件校验数据 3. 使用forms组 ...

  3. python中lambda、yield、map、filter、reduce的使用

    1. 匿名函数lambda python中允许使用lambda关键字定义一个匿名函数.所谓的匿名函数就是说使用一次或者几次之后就不再需要的函数,属于"一次性"函数. #例1:求两数 ...

  4. 10个顶级Python实用库,推荐你试试!

    为什么我喜欢Python?对于初学者来说,这是一种简单易学的编程语言,另一个原因:大量开箱即用的第三方库,正是23万个由用户提供的软件包使得Python真正强大和流行. 在本文中,我挑选了15个最有用 ...

  5. Java 面向对象 01

    面向对象·一级 面向对象思想概述 * A:面向过程思想概述     * 第一步     * 第二步 * B:面向对象思想概述     * 找对象(第一步,第二步) * C:举例     * 买煎饼果子 ...

  6. C# 应用 - 封装类访问 Mysql 数据库

    个人经历的项目主要都是用 Postgresql 或 Oracle 数据库,本文非原创,从他处整理而来. 1. 库类 mysql.data.dll using MySql.Data.MySqlClien ...

  7. (Java基础--Spring阶段)常见面试题题目及解析整理(2021.03.12)

    题目整理 Java基础进阶阶段 基础概念类 1.JDK1.8新特性? 2.面向对象和面向过程的区别? 3.什么是值传递和引用传递? 4.什么是不可变对象? 5.讲讲类的实例化顺序? 6.java 创建 ...

  8. 【odoo14】第八章、服务侧开发-进阶

    本章代码位于作为GITHUB库 https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition 在第五章( ...

  9. ASPOSE.Cells & ASPOSE.Words 操纵Excel和Word文档的 .NET Core 实例

    Aspose.Total是Aspose公司旗下的最全的一套office文档管理方案,它提供的原生API可以对Word.Excel.PDF.Powerpoint.Outlook.CAD.图片.3D.ZI ...

  10. Linux内核源码分析之setup_arch (四)

    前言 Linux内核源码分析之setup_arch (三) 基本上把setup_arch主要的函数都分析了,由于距离上一篇时间比较久了,所以这里重新贴一下大致的流程图,本文主要分析的是bootmem_ ...