[AtcoderABC200E]Patisserie

题面翻译

对于一个三元组\((i,j,k)\) 我们对它按如下要求进行升序排序:

  • 第一关键词 \(i + j + k\) 即三者总和

  • 第二关键词 \(i\)

  • 第三关键词 \(j\)

特别的 我们给出了\(n\)

对于任何一个三元组\((i,j,k)\ i\in[1,n], j\in[1,n], k\in[1,n]都存在\)

现在给出\(P\) 求出排名为P的三元组的具体元素 即\((i,j,k)\)

\(n \leq 10^6\ \ k \leq 10^3\)

思路

类似于Contor展开的排列计数方法

也就是试填法

即枚举每一项元素 通过函数\(calc()\)计算该项排列或是数列的个数

根据排名快速确定每一位元素

现在的问题就是如何实现\(calc()\)

你可以通过打表 或是 硬推 得到一部分思路

根据第一个条件先确定第一位 (因为总和确定后面就好搞了

很容易可以发现

第一个条件就是再求\(
\begin{cases}
i + j + k = x \\
i \leq n \\
j \leq n \\
k \leq n \\
\end{cases}
\)的方案数

那么 随便 一算可以推出方案数

\[g(x)=
\begin{cases}
0,\quad x\in(-\infty,3)\cup(3n,\infty) \\
\frac{(x-1)(x-2)}{2},\quad x\in[3,3n]
\end{cases}
\]

或者说是

\[\left(
\begin{matrix}
x-1 \\
2 \\
\end{matrix}
\right)
\]

然后我们考虑一下加上限制

加上其中一项 就把它减去n算一下之前的g(x)

即\(g(x - n)\) 也就是

\[\left(
\begin{matrix}
x-n \\
2
\end{matrix}
\right)
\]

然后可以随意加其中一个 共有三种方案 系数为-3

任选其中两项、三项(好像用不到)同理

那么真正的方案书\(f(x)\)也就是

\[f(x) = g(x) - 3g(x - n) + 3g(x - 2n) - g(x - 3n)
\]

补充:

这里还有一种DP写法 可能会好理解一些

本文就不再赘述 请读者自行思考或查阅

总结

这道题放在定位为普及模拟赛T2令人着实很吃惊

主要是时间较紧也就成了选手实力的分水岭

要看能不能往组合数的角度(插板法 也许吧)去想了

俺比赛的时候推出第一个式子以为是高阶等差数列 就开始没推出来

还是经验太少了 毕竟OI的数学题还是相对挺少的

Code

说实话真的短 就是思路挺妙的

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cstring> using namespace std; #define int long long int read(int x = 0, bool f = false, char ch = getchar()) {
for (; !isdigit(ch); ch = getchar()) f |= (ch == '-');
for (; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + (ch ^ 48);
return f ? ~x + 1 : x;
} int g(int x) {return x <= 2? 0 : ((x - 1) * (x - 2)) / 2;} int f(int x, int y) {return g(x) - 3 * g(x - y) + 3 * g(x - 2 * y) - g(x - 3 * y);} int n, k; signed main() {
// freopen("cake.in", "r", stdin);
// freopen("cake.out", "w", stdout);
n = read(), k = read();
for (int i = 3; i <= 3 * n; ++i) {
if (k <= f(i,n)) {
for (int j = 1; j <= n; ++j) {
int mn = max(1ll, i - j - n), mx = min(n, i - j - 1ll);
if (mx < mn) continue;
if (k <= mx - mn + 1)
return printf("%lld %lld %lld\n", j, mn + k - 1, i - j - mn - k + 1), 0;
k -= mx - mn + 1;
}
} else k -= f(i,n);
}
}

[AtcoderABC200E]Patisserie的更多相关文章

  1. The 10 best sweet treats in Singapore

    Every time I walk out of Changi airport's air-conditioning into the humid outdoors, there's a sweet ...

  2. AtCoder Beginner Contest 100 2018/06/16

    A - Happy Birthday! Time limit : 2sec / Memory limit : 1000MB Score: 100 points Problem Statement E8 ...

  3. CET4

    Directions: For this part, you are allowed 30 minutes to write a short essay on the challenges of st ...

  4. KYOCERA Programming Contest 2021(AtCoder Beginner Contest 200) 题解

    KYOCERA Programming Contest 2021(AtCoder Beginner Contest 200) 题解 哦淦我已经菜到被ABC吊打了. A - Century 首先把当前年 ...

随机推荐

  1. LaTex公式语法教程及手册(附emlogpro公式显示插件katex说明)

    目录 第一列 第二列 第三列 效果 求和(使用\sum标签) 文本效果 本插件简介 积分(使用\int标签) 文本大小 LaTex是什么 空格 特殊符号 LaTex公式使用教程及手册 定界符 LaTe ...

  2. Install Redmine Server with Bitnami Installer

    Download bitnami installer: bitnami-redmine-2.4.1-1-linux-installer.run $ chmod 755 bitnami...instal ...

  3. setsockopt中参数之SO_REUSEADDR的意义

    1.setsockopt中参数之SO_REUSEADDR的意义 1.一般来说,一个端口释放后会等待两分钟之后才能再被使用,SO_REUSEADDR是让端口释放后立即就可以被再次使用. SO_REUSE ...

  4. filter,interceptor,controllerAdvice,aspect,controller执行顺序

    1.filter,这是java的过滤器,和框架无关的,是所有过滤组件中最外层的,从粒度来说是最大的. 配置方式,有直接实现Filter+@component,@Bean+@configuration( ...

  5. 基于AOP和HashMap原理学习,开发Mysql分库分表路由组件!

    作者:小傅哥 博客:https://bugstack.cn 沉淀.分享.成长,让自己和他人都能有所收获! 一.前言 什么?Java 面试就像造火箭 单纯了! 以前我也一直想 Java 面试就好好面试呗 ...

  6. 附件携马之CS免杀shellcode过国内主流杀软

    0x01 写在前面 其实去年已经写过类似的文章,但是久没用了,难免有些生疏.所谓温故而知新,因此再详细的记录一下,一方面可以给各位看官做个分享,另一方面等到用时也不至于出现临阵磨枪的尴尬场面. 0x0 ...

  7. CVE-2021-21972 vSphere Client RCE复现,附POC & EXP

    漏洞简介 vSphere 是 VMware 推出的虚拟化平台套件,包含 ESXi.vCenter Server 等一系列的软件.其中 vCenter Server 为 ESXi 的控制中心,可从单一控 ...

  8. 使用Postfix与Dovecot收发电子邮件(物理机虚拟机之间)

    邮件应用协议包括: 简单邮件传输协议(SMTP),用来发送或中转发出的电子邮件,占用tcp 25端口. 第三版邮局协议(POP3),用于将服务器上把邮件存储到本地主机,占用tcp 110端口. 第四版 ...

  9. CMD直接输入Java,Javac,Javap发生乱码解决方式

    首先需要设置jdk的默认编码,在之前一篇博文里有 然后在cmd里直接执行chcp 65001   代表将cmd换成UTF-8的显示页 936是GBK 437为英语

  10. FirstGradle

    一.导入依赖 二.build.gradle 整合SpringBoot plugins { id 'java' } group 'com.qiang' version '1.0.0-SNAPSHOT' ...