[AtcoderABC200E]Patisserie
[AtcoderABC200E]Patisserie
题面翻译
对于一个三元组\((i,j,k)\) 我们对它按如下要求进行升序排序:
第一关键词 \(i + j + k\) 即三者总和
第二关键词 \(i\)
第三关键词 \(j\)
特别的 我们给出了\(n\)
对于任何一个三元组\((i,j,k)\ i\in[1,n], j\in[1,n], k\in[1,n]都存在\)
现在给出\(P\) 求出排名为P的三元组的具体元素 即\((i,j,k)\)
\(n \leq 10^6\ \ k \leq 10^3\)
思路
也就是试填法
即枚举每一项元素 通过函数\(calc()\)计算该项排列或是数列的个数
根据排名快速确定每一位元素
现在的问题就是如何实现\(calc()\)
你可以通过打表 或是 硬推 得到一部分思路
根据第一个条件先确定第一位 (因为总和确定后面就好搞了
很容易可以发现
第一个条件就是再求\(
\begin{cases}
i + j + k = x \\
i \leq n \\
j \leq n \\
k \leq n \\
\end{cases}
\)的方案数
那么 随便 一算可以推出方案数
\begin{cases}
0,\quad x\in(-\infty,3)\cup(3n,\infty) \\
\frac{(x-1)(x-2)}{2},\quad x\in[3,3n]
\end{cases}
\]
或者说是
\begin{matrix}
x-1 \\
2 \\
\end{matrix}
\right)
\]
然后我们考虑一下加上限制
加上其中一项 就把它减去n算一下之前的g(x)
即\(g(x - n)\) 也就是
\begin{matrix}
x-n \\
2
\end{matrix}
\right)
\]
然后可以随意加其中一个 共有三种方案 系数为-3
任选其中两项、三项(好像用不到)同理
那么真正的方案书\(f(x)\)也就是
\]
补充:
这里还有一种DP写法 可能会好理解一些
本文就不再赘述 请读者自行思考或查阅
总结
这道题放在定位为普及模拟赛T2令人着实很吃惊
主要是时间较紧也就成了选手实力的分水岭
要看能不能往组合数的角度(插板法 也许吧)去想了
俺比赛的时候推出第一个式子以为是高阶等差数列 就开始没推出来
还是经验太少了 毕竟OI的数学题还是相对挺少的
Code
说实话真的短 就是思路挺妙的
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cstring>
using namespace std;
#define int long long
int read(int x = 0, bool f = false, char ch = getchar()) {
for (; !isdigit(ch); ch = getchar()) f |= (ch == '-');
for (; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + (ch ^ 48);
return f ? ~x + 1 : x;
}
int g(int x) {return x <= 2? 0 : ((x - 1) * (x - 2)) / 2;}
int f(int x, int y) {return g(x) - 3 * g(x - y) + 3 * g(x - 2 * y) - g(x - 3 * y);}
int n, k;
signed main() {
// freopen("cake.in", "r", stdin);
// freopen("cake.out", "w", stdout);
n = read(), k = read();
for (int i = 3; i <= 3 * n; ++i) {
if (k <= f(i,n)) {
for (int j = 1; j <= n; ++j) {
int mn = max(1ll, i - j - n), mx = min(n, i - j - 1ll);
if (mx < mn) continue;
if (k <= mx - mn + 1)
return printf("%lld %lld %lld\n", j, mn + k - 1, i - j - mn - k + 1), 0;
k -= mx - mn + 1;
}
} else k -= f(i,n);
}
}
[AtcoderABC200E]Patisserie的更多相关文章
- The 10 best sweet treats in Singapore
Every time I walk out of Changi airport's air-conditioning into the humid outdoors, there's a sweet ...
- AtCoder Beginner Contest 100 2018/06/16
A - Happy Birthday! Time limit : 2sec / Memory limit : 1000MB Score: 100 points Problem Statement E8 ...
- CET4
Directions: For this part, you are allowed 30 minutes to write a short essay on the challenges of st ...
- KYOCERA Programming Contest 2021(AtCoder Beginner Contest 200) 题解
KYOCERA Programming Contest 2021(AtCoder Beginner Contest 200) 题解 哦淦我已经菜到被ABC吊打了. A - Century 首先把当前年 ...
随机推荐
- SaToken学习笔记-04
SaToken学习笔记-04 如果有问题,请点击:传送门 角色认证 在sa-token中,角色和权限可以独立验证 // 当前账号是否含有指定角色标识, 返回true或false StpUtil.has ...
- dubbo学习实践(5)之Dubbo-Admin元数据中心配置(zookeeper&Redis&Consul)
1.Dubbo2.7.8元数据中心配置zookeeper版 前面文章已经写到了dubbo-admin管理平台的docker版配置及dubbo服务注册与调用,这篇文章记录dubbo元数据中心配置 翻开d ...
- Servelt&&JSP进阶
Servlet与JSP进阶 来自mkw的视频课程的总结 1.前言 内容包括 掌握Java Web核心特性,Servlet核心对象以及JSP九大内置对象.主要有以下的内容: 请求结构 && ...
- 遇到的JDBC的一些简单错误
遇到的JDBC的一些简单错误 复习java swing的使用的时候,把东西都写好了,但是在进行数据库连接的时候,出现了错误 java.lang.ClassNotFoundException: com. ...
- 【笔记】ROC曲线
ROC曲线 前文讲了PR曲线 这里说ROC曲线,其描述的是TPR和FPR之间的关系 TPR是什么呢,TPR就是召回率 FPR是什么呢,FPR就是和TPR对应的,即真实值为0的一行中的预测为1的部分比例 ...
- 手把手和你一起实现一个Web框架实战——EzWeb框架(三)[Go语言笔记]Go项目实战
手把手和你一起实现一个Web框架实战--EzWeb框架(三)[Go语言笔记]Go项目实战 代码仓库: github gitee 中文注释,非常详尽,可以配合食用 本篇代码,请选择demo3 这一篇文章 ...
- Asp.Net Core 导入Excel数据到Sqlite数据库并重新导出到Excel
Asp.Net Core 导入Excel数据到Sqlite数据库并重新导出到Excel 在博文"在Asp.Net Core 使用 Sqlite 数据库"中创建了ASP.NET Co ...
- 前端从😳 到🚪 gRPC 框架
RPC 是什么? RPC 英文全称是 Remote Procedure Call 既远程过程调用,维基百科中给的定义是一个计算机调用了一个函数,但这个函数并不在这台计算机上,这种远程调用方式程序员无需 ...
- NOIP 模拟 $29\; \rm 最近公共祖先$
题解 \(by\;zj\varphi\) 首先考虑,如果将一个点修改成了黑点,那么它能够造成多少贡献. 它先会对自己的子树中的答案造成 \(w_x\) 的贡献. 考虑祖先时,它会对不包括自己的子树造成 ...
- vue2.0中文文档
地址1: 链接: https://pan.baidu.com/s/1uEzM990A-W-fl23ref2zww 提取码: rkpt 复制这段内容后打开百度网盘手机App,操作更方便哦 地址2:htt ...