[AtcoderABC200E]Patisserie
[AtcoderABC200E]Patisserie
题面翻译
对于一个三元组\((i,j,k)\) 我们对它按如下要求进行升序排序:
第一关键词 \(i + j + k\) 即三者总和
第二关键词 \(i\)
第三关键词 \(j\)
特别的 我们给出了\(n\)
对于任何一个三元组\((i,j,k)\ i\in[1,n], j\in[1,n], k\in[1,n]都存在\)
现在给出\(P\) 求出排名为P的三元组的具体元素 即\((i,j,k)\)
\(n \leq 10^6\ \ k \leq 10^3\)
思路
也就是试填法
即枚举每一项元素 通过函数\(calc()\)计算该项排列或是数列的个数
根据排名快速确定每一位元素
现在的问题就是如何实现\(calc()\)
你可以通过打表 或是 硬推 得到一部分思路
根据第一个条件先确定第一位 (因为总和确定后面就好搞了
很容易可以发现
第一个条件就是再求\(
\begin{cases}
i + j + k = x \\
i \leq n \\
j \leq n \\
k \leq n \\
\end{cases}
\)的方案数
那么 随便 一算可以推出方案数
\begin{cases}
0,\quad x\in(-\infty,3)\cup(3n,\infty) \\
\frac{(x-1)(x-2)}{2},\quad x\in[3,3n]
\end{cases}
\]
或者说是
\begin{matrix}
x-1 \\
2 \\
\end{matrix}
\right)
\]
然后我们考虑一下加上限制
加上其中一项 就把它减去n算一下之前的g(x)
即\(g(x - n)\) 也就是
\begin{matrix}
x-n \\
2
\end{matrix}
\right)
\]
然后可以随意加其中一个 共有三种方案 系数为-3
任选其中两项、三项(好像用不到)同理
那么真正的方案书\(f(x)\)也就是
\]
补充:
这里还有一种DP写法 可能会好理解一些
本文就不再赘述 请读者自行思考或查阅
总结
这道题放在定位为普及模拟赛T2令人着实很吃惊
主要是时间较紧也就成了选手实力的分水岭
要看能不能往组合数的角度(插板法 也许吧)去想了
俺比赛的时候推出第一个式子以为是高阶等差数列 就开始没推出来
还是经验太少了 毕竟OI的数学题还是相对挺少的
Code
说实话真的短 就是思路挺妙的
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cstring>
using namespace std;
#define int long long
int read(int x = 0, bool f = false, char ch = getchar()) {
for (; !isdigit(ch); ch = getchar()) f |= (ch == '-');
for (; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + (ch ^ 48);
return f ? ~x + 1 : x;
}
int g(int x) {return x <= 2? 0 : ((x - 1) * (x - 2)) / 2;}
int f(int x, int y) {return g(x) - 3 * g(x - y) + 3 * g(x - 2 * y) - g(x - 3 * y);}
int n, k;
signed main() {
// freopen("cake.in", "r", stdin);
// freopen("cake.out", "w", stdout);
n = read(), k = read();
for (int i = 3; i <= 3 * n; ++i) {
if (k <= f(i,n)) {
for (int j = 1; j <= n; ++j) {
int mn = max(1ll, i - j - n), mx = min(n, i - j - 1ll);
if (mx < mn) continue;
if (k <= mx - mn + 1)
return printf("%lld %lld %lld\n", j, mn + k - 1, i - j - mn - k + 1), 0;
k -= mx - mn + 1;
}
} else k -= f(i,n);
}
}
[AtcoderABC200E]Patisserie的更多相关文章
- The 10 best sweet treats in Singapore
Every time I walk out of Changi airport's air-conditioning into the humid outdoors, there's a sweet ...
- AtCoder Beginner Contest 100 2018/06/16
A - Happy Birthday! Time limit : 2sec / Memory limit : 1000MB Score: 100 points Problem Statement E8 ...
- CET4
Directions: For this part, you are allowed 30 minutes to write a short essay on the challenges of st ...
- KYOCERA Programming Contest 2021(AtCoder Beginner Contest 200) 题解
KYOCERA Programming Contest 2021(AtCoder Beginner Contest 200) 题解 哦淦我已经菜到被ABC吊打了. A - Century 首先把当前年 ...
随机推荐
- 在游戏中播放cg视频遇到的问题
遇到问题 我们线上手游要给港澳台用户增加cg视频,在我之前文章中已经讲到了我们是怎么在unity中播放cg的--><使用AVPro Video在Unity中播放开场视频(CG)笔记> ...
- 【网络编程】TCPIP_1_快速入门
目录 前言 1. 快速入门 1.1 服务端编程简要步骤 1.2 客户端编程简要步骤 1.3 参考 前言 说明: demo 基于 Linux. 1. 快速入门 以下步骤简略了很多细节,但是通过下面的几个 ...
- Linux进程理解与实践(五)细谈守护进程
一. 守护进程及其特性 守护进程最重要的特性是后台运行.在这一点上DOS下的常驻内存程序TSR与之相似.其次,守护进程必须与其运行前的环境隔离开来.这些环境包括未关闭的文件描述符,控制终端, ...
- Mantis安装过程笔记
安装平台:Windows Server 2003 R2 Enterprise x64 Edition 软件: EasyPHP-5.3.6.1 mantisbt-1.2.6 安装过程: 首先安装Easy ...
- JavaScript学习02(js快速入门)
快速入门 基本语法 JavaScript的语法和Java的语法类似,每个语句以;结束,语句块用{...}.但是JavaScrip并不强制要求在每个语句的结尾加;,浏览器中负责执行JavaScript代 ...
- 手把手和你一起实现一个Web框架实战——EzWeb框架(二)[Go语言笔记]Go项目实战
手把手和你一起实现一个Web框架实战--EzWeb框架(二)[Go语言笔记]Go项目实战 代码仓库: github gitee 中文注释,非常详尽,可以配合食用 上一篇文章我们实现了框架的雏形,基本地 ...
- 数据结构与算法-排序(七)希尔排序(Shell Sort)
摘要 看希尔排序需要先想象出一个二维的矩阵,在这个矩阵中,有多少列数据全看步长(一定的规则得到).处理完之后,就再接着用另一个步长组成矩阵处理.直到步长全部使用完. 这里的巧妙之处就是没有把序列先处理 ...
- CF上部分树形DP练习题
本次 5 道题均来自Codeforce 关于树形DP的算法讲解:Here 791D. Bear and Tree Jumps 如果小熊每次能跳跃的距离为1,那么问题变为求树上任意两点之间距离之和. 对 ...
- DVWA(五):CSRF 全等级跨站请求伪造
CSRF,全称Cross-site request forgery,翻译过来就是跨站请求伪造,是指利用受害者尚未失效的身份认证信息(cookie.会话等),诱骗其点击恶意链接或者访问包含攻击代码的页面 ...
- 题解 Emotional Flutter
传送门 因为一个等号挂掉了10pts 发现每个黑色段一定对应了一段不可行的出发区间 检查是否存在所有黑色段的并集的补集即可 具体来说,我们对于每个黑色段计算出一个(有的是两个)区间 \([l, r]\ ...