Solution -「SDOI 2018」「洛谷 P4606」战略游戏
\(\mathcal{Description}\)
Link.
给定一个 \(n\) 个点 \(m\) 条边的无向连通图,\(q\) 次询问,每次给出一个点集 \(s\),求至少在原图中删去多少个点,使得 \(s\) 中存在两点不连通。多组数据。
每组数据 \(n,q\le10^5\),\(m,\sum|s|\le2\times10^5\)。
\(\mathcal{Solution}\)
看到 \(\sum|s|\) 的限制,不难联想到虚树或者其它与 DFN 相关的算法。
所以,先建出圆方树,并处理好 DFN,LCA 的一系列信息。考虑到答案就是 \(s\) 中的点在树上构成的连通块中不在 \(s\) 集合里的圆点个数,可以求一个树上前缀和:\(sum_u\) 表示从 \(u\) 到根路径上的圆点个数。处理询问时,先将 \(s\) 按 DFN 从小到大排序,两两 LCA 计算贡献(\(s_1\) 和 \(s_{|s|}\) 也要算一次),最后除以 \(2\),得到 \(cnt\)。不过整个连通块的根(\(\operatorname{LCA}(s_1,s_{|s|})\))这个点的贡献被遗漏了,所以要再加上这个点单独的贡献。最终答案就是 \(cnt-|s|\)。
复杂度 \(\mathcal O(T(n\log n+\sum|s|\log\sum|s|))\)。
\(\mathcal{Code}\)
就是练练码力的一道题嘛 qwq。
#include <queue>
#include <cstdio>
#include <algorithm>
#define adj( g, u, v ) \
for ( int eid = g.head[u], v; v = g.to[eid], eid; eid = g.nxt[eid] )
const int MAXN = 2e5, MAXM = 4e5;
int n, m, q, snode;
int dfc, top, dfn[MAXN + 5], low[MAXN + 5], stk[MAXN + 5];
int lg[MAXN * 2 + 5], dep[MAXN + 5], st[MAXN * 2 + 5][20], sum[MAXN + 5];
struct Graph {
int ecnt, head[MAXN + 5], to[MAXM + 5], nxt[MAXM + 5];
inline void link ( const int s, const int t ) {
to[++ ecnt] = t, nxt[ecnt] = head[s];
head[s] = ecnt;
}
inline void add ( const int u, const int v ) {
link ( u, v ), link ( v, u );
}
inline void clear () {
ecnt = 0;
for ( int i = 1; i <= n << 1; ++ i ) head[i] = 0;
}
} src, tre;
inline int rint () {
int x = 0; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () );
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x;
}
inline bool chkmin ( int& a, const int b ) { return b < a ? a = b, true : false; }
inline void clear () {
src.clear (), tre.clear ();
dfc = top = snode = 0;
for ( int i = 1; i <= n << 1; ++ i ) dfn[i] = low[i] = 0;
}
inline void Tarjan ( const int u, const int f ) {
dfn[u] = low[u] = ++ dfc, stk[++ top] = u;
adj ( src, u, v ) if ( v ^ f ) {
if ( ! dfn[v] ) {
Tarjan ( v, u ), chkmin ( low[u], low[v] );
if ( low[v] >= dfn[u] ) {
tre.add ( u, ++ snode );
do tre.add ( snode, stk[top] ); while ( stk[top --] ^ v );
}
} else chkmin ( low[u], dfn[v] );
}
}
inline void initDFN ( const int u, const int f ) {
dep[st[dfn[u] = ++ dfc][0] = u] = dep[f] + 1, sum[u] = sum[f] + ( u <= n );
adj ( tre, u, v ) if ( v ^ f ) initDFN ( v, u ), st[++ dfc][0] = u;
}
inline void initST () {
for ( int i = 2; i <= n << 2; ++ i ) lg[i] = lg[i >> 1] + 1;
for ( int j = 1; 1 << j <= dfc; ++ j ) {
for ( int i = 1; i + ( 1 << j ) - 1 <= dfc; ++ i ) {
if ( dep[st[i][j - 1]] < dep[st[i + ( 1 << j >> 1 )][j - 1]] ) st[i][j] = st[i][j - 1];
else st[i][j] = st[i + ( 1 << j >> 1 )][j - 1];
}
}
}
inline int calcLCA ( int u, int v ) {
if ( dfn[u] > dfn[v] ) u ^= v ^= u ^= v;
int k = lg[dfn[v] - dfn[u] + 1];
return dep[st[dfn[u]][k]] < dep[st[dfn[v] - ( 1 << k ) + 1][k]] ?
st[dfn[u]][k] : st[dfn[v] - ( 1 << k ) + 1][k];
}
inline void solve () {
static int cnts, s[MAXN + 5];
cnts = rint ();
for ( int i = 1; i <= cnts; ++ i ) s[i] = rint ();
std::sort ( s + 1, s + cnts + 1, []( const int a, const int b ) { return dfn[a] < dfn[b]; } );
int cnt = 0;
for ( int i = 1; i < cnts; ++ i ) {
int u = s[i], v = s[i + 1], t = calcLCA ( u, v );
cnt += sum[u] + sum[v] - 2 * sum[t];
}
int u = s[1], v = s[cnts], t = calcLCA ( u, v );
cnt += sum[u] + sum[v] - 2 * sum[t];
cnt /= 2, cnt += ( t <= n ) - cnts;
printf ( "%d\n", cnt );
}
int main () {
for ( int T = rint (); T --; clear () ) {
n = snode = rint (), m = rint ();
for ( int i = 1, u, v; i <= m; ++ i ) {
u = rint (), v = rint ();
src.add ( u, v );
}
Tarjan ( 1, 0 ), dfc = 0;
initDFN ( 1, 0 ), initST ();
for ( q = rint (); q --; ) solve ();
}
return 0;
}
Solution -「SDOI 2018」「洛谷 P4606」战略游戏的更多相关文章
- 洛谷P4606 [SDOI2018]战略游戏 【圆方树 + 虚树】
题目链接 洛谷P4606 双倍经验:弱化版 题解 两点之间必经的点就是圆方树上两点之间的圆点 所以只需建出圆方树 每次询问建出虚树,统计一下虚树边上有多少圆点即可 还要讨论一下经不经过根\(1\)的情 ...
- 洛谷P4606 [SDOI2018]战略游戏 [广义圆方树]
传送门 思路 先考虑两点如何使他们不连通. 显然路径上所有的割点都满足条件. 多个点呢?也是这样的. 于是可以想到圆方树.一个点集的答案就是它的虚树里圆点个数减去点集大小. 可以把点按dfs序排序,然 ...
- 【洛谷P2016】战略游戏
题面 题解 树形\(dp\)(最大独立集) 设\(f_{i,0/1}\)表示\(dp\)到第\(i\)个点,在这个点放了(没放)士兵的最小花费 直接转移即可. 代码 #include<cstdi ...
- 洛谷4606 SDOI2018战略游戏(圆方树+虚树)
QWQ深受其害 当时在现场是真的绝望...... 现在再重新来看这个题 QWQ 根据题目所说,我们可以发现,对于每一个集合中的节点,我们实际上就是要求两两路径上的割点的数目 考虑到又是关于点双的题目, ...
- 「区间DP」「洛谷P1043」数字游戏
「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...
- 洛谷P1118 数字三角形游戏
洛谷1118 数字三角形游戏 题目描述 有这么一个游戏: 写出一个1-N的排列a[i],然后每次将相邻两个数相加,构成新的序列,再对新序列进行这样的操作,显然每次构成的序列都比上一次的序列长度少1,直 ...
- 洛谷P1274-魔术数字游戏
Problem 洛谷P1274-魔术数字游戏 Accept: 118 Submit: 243Time Limit: 1000 mSec Memory Limit : 128MB Probl ...
- 洛谷P1288 取数游戏II(博弈)
洛谷P1288 取数游戏II 先手必胜的条件需要满足如下中至少 \(1\) 条: 从初始位置向左走到第一个 \(0\) 的位置,经过边的数目为偶数(包含 \(0\) 这条边). 从初始位置向右走到第一 ...
- Solution -「JSOI 2019」「洛谷 P5334」节日庆典
\(\mathscr{Description}\) Link. 给定字符串 \(S\),求 \(S\) 的每个前缀的最小表示法起始下标(若有多个,取最小的). \(|S|\le3\time ...
随机推荐
- Linux命令--ss命令的参数及使用详解
ss是Socket Statistics的缩写.顾名思义,ss命令可以用来获取socket统计信息,它可以显示和netstat类似的内容.但ss的优势在于它能够显示更多更详细的有关TCP和连接状态的信 ...
- react中异步组件以及withRouter的使用
什么是异步组件?简单来说就是异步加载一个组件,正常情况浏览器加载的是我们打包好的bundle.js文件,那么这个文件是集合了所有js是代码,然而我们首屏加载并不需要一次性加载所有的组件,这会造成性能的 ...
- 第10组 Alpha冲刺 (2/6)
1.1基本情况 ·队名:今晚不睡觉 ·组长博客:https://www.cnblogs.com/cpandbb/ ·作业博客:https://edu.cnblogs.com/campus/fzu/FZ ...
- 实验 4 :Open vSwitch 实验 —— Mininet 中使用 OVS 命令
实验 4 :Open vSwitch 实验 -- Mininet 中使用 OVS 命令 一.实验目的 Mininet 安装之后,会连带安装 Open vSwitch,可以直接通过 Python 脚本调 ...
- 痞子衡嵌入式:我入选了2021年度与非网(eefocus)星选创作者Top10
本周二「与非网」一个美女运营小姐姐加痞子衡微信,告知痞子衡评上了一个奖,让痞子衡把收件地址告诉她,她把证书寄过来. 昨天痞子衡收到了快递,拆开一看,原来是被评上了 与非网 2021 年度创作者,这个证 ...
- nginx+php环境搭建详解(Linux)
今天在内网环境下,给linux主机安装nginx+php环境,由于是内网环境,只能手动解压缩包进行安装,在这过程中我也着实遇到了一些问题(困扰了我许久),还好最后搭建环境成功了,所以写篇博客记录一下, ...
- Python 为什么不设计 do-while 循环结构?
在某些编程语言中,例如 C/C++.C#.PHP.Java.JavaScript 等等,do-while 是一种基本的循环结构. 它的核心语义是:先执行一遍循环体代码,然后执行一遍条件语句,若条件语句 ...
- ROS Kinetic 使用PocketSphinx进行语音识别报错
已解决,重启电脑,装环境把声卡驱动那些似乎死机了 ROS Kinetic 使用PocketSphinx进行语音识别教程 https://www.ncnynl.com/archives/201701/ ...
- Centos 7 安装LAMP以及在Apache上安装positiveSSL。
简介 LAMP(linux , Apache, mysql , php)是集成动态网站经常使用的一套开源软件,实际包含linux操作系统,Apache web服务器,mysql(mariadb 分支) ...
- 集合框架-ListIterator接口
1 package cn.itcast.p4.list.demo; 2 3 import java.util.ArrayList; 4 import java.util.Iterator; 5 imp ...