Solution -「LGR-087」「洛谷 P6860」象棋与马
\(\mathcal{Description}\)
Link.
在一个 \(\mathbb R^2\) 的 \((0,0)\) 处有一颗棋子,对于参数 \(a,b\),若它当前坐标为 \((x,y)\),则它下一步可以走到 \((x\pm a,y\pm b)\) 和 \((x\pm b,y\pm a)\)。令 \(p(s,t)\) 表示 \(a=s,b=t\) 时,棋子是否能走遍所有整点。求:
\]
答案自然溢出。
\(T\) 组数据,\(nT\le10^{11}\)。
\(\mathcal{Solution}\)
首先来描述 \(p(s,t)\),运用“组合操作”的思想,一颗棋子能走到所有整点,当且仅当它能位移 \((\pm 1,0)\) 和 \((0,\pm 1)\)。结合样例想一下发现 \(p(s,t)=[2\not|(s+t)\land\gcd(s,t)=1]\)。于是问题等价于求 \(n\) 以内奇偶性不同且互素的数对个数。推式子:
\sum_{i=1}^n\sum_{j=1}^n[2\not|(s+t)\land\gcd(s,t)=1]&=\sum_{i=1}^n\sum_{j=1}^n[\gcd(i,j)=1]-\sum_{i=1}^n\sum_{j=1}^n[2\not|i][2\not|j][\gcd(i,j)=1]\\
&=\sum_{d=1}^n\mu(d)\lfloor\frac{n}{d}\rfloor^2-\sum_{d=1}^n[2\not|d]\mu(d)\lceil\frac{n}{d}\rceil^2
\end{aligned}
\]
所以问题在于求:
\]
利用 \(\mu\) 积性,\(2\) 与奇数互素可以化成后面的样子,前一项杜教筛,后一项递归到规模小一半的原问题,记忆化一下直接计算即可。
复杂度 \(\mathcal O(n^{\frac{2}3})\)(?
\(\mathcal{Code}\)
求奇偶 \(\mu\) 的函数写得有点丑,知道意思就行 owo。
/* Clearink */
#include <cstdio>
#include <tr1/unordered_map>
typedef unsigned long long ULL;
const int MAXN = 7e6;
ULL n;
int pn, pr[MAXN + 5], mu[MAXN + 5], mus[MAXN + 5], emus[MAXN + 5];
bool vis[MAXN + 5];
std::tr1::unordered_map<ULL, ULL> remmu, rememu;
inline void sieve ( const int n ) {
mu[1] = mus[1]= 1;
for ( int i = 2; i <= n; ++ i ) {
if ( ! vis[i] ) pr[++ pn] = i, mu[i] = -1;
for ( int j = 1, t; j <= pn && ( t = i * pr[j] ) <= n; ++ j ) {
vis[t] = true;
if ( !( i % pr[j] ) ) break;
mu[t] = -mu[i];
}
mus[i] = mus[i - 1] + mu[i];
emus[i] = emus[i - 1] + !( i & 1 ) * mu[i];
}
}
inline ULL calcMus ( const ULL n ) {
if ( n <= MAXN ) return mus[n];
if ( remmu.count ( n ) ) return remmu[n];
ULL ret = 1;
for ( ULL l = 2, r; l <= n; l = r + 1 ) {
r = n / ( n / l );
ret -= ULL ( r - l + 1 ) * calcMus ( n / l );
}
return remmu[n] = ret;
}
inline ULL calcEvenMus ( const ULL n ) {
if ( n <= MAXN ) return emus[n];
if ( rememu.count ( n ) ) return rememu[n];
return rememu[n] = calcEvenMus ( n >> 1 ) - calcMus ( n >> 1 );
}
inline ULL calcOddMus ( const ULL n ) {
return calcMus ( n ) - calcEvenMus ( n );
}
int main () {
sieve ( MAXN );
int T;
for ( scanf ( "%d", &T ); T --; ) {
scanf ( "%llu", &n ); ULL ans = 0;
for ( ULL l = 1, r; l <= n; l = r + 1 ) {
r = n / ( n / l );
ans += ( calcMus ( r ) - calcMus ( l - 1 ) ) * ( n / l ) * ( n / l );
ans -= ( calcOddMus ( r ) - calcOddMus ( l - 1 ) )
* ( n / l + 1 >> 1 ) * ( n / l + 1 >> 1 );
}
printf ( "%llu\n", ans );
}
return 0;
}
Solution -「LGR-087」「洛谷 P6860」象棋与马的更多相关文章
- 「区间DP」「洛谷P1043」数字游戏
「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...
- Solution -「JSOI 2019」「洛谷 P5334」节日庆典
\(\mathscr{Description}\) Link. 给定字符串 \(S\),求 \(S\) 的每个前缀的最小表示法起始下标(若有多个,取最小的). \(|S|\le3\time ...
- Solution -「洛谷 P4372」Out of Sorts P
\(\mathcal{Description}\) OurOJ & 洛谷 P4372(几乎一致) 设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排 ...
- Solution -「POI 2010」「洛谷 P3511」MOS-Bridges
\(\mathcal{Description}\) Link.(洛谷上这翻译真的一言难尽呐. 给定一个 \(n\) 个点 \(m\) 条边的无向图,一条边 \((u,v,a,b)\) 表示从 ...
- Solution -「APIO 2016」「洛谷 P3643」划艇
\(\mathcal{Description}\) Link & 双倍经验. 给定 \(n\) 个区间 \([a_i,b_i)\)(注意原题是闭区间,这里只为方便后文描述),求 \(\ ...
- 「洛谷4197」「BZOJ3545」peak【线段树合并】
题目链接 [洛谷] [BZOJ]没有权限号嘤嘤嘤.题号:3545 题解 窝不会克鲁斯卡尔重构树怎么办??? 可以离线乱搞. 我们将所有的操作全都存下来. 为了解决小于等于\(x\)的操作,那么我们按照 ...
- 「洛谷3338」「ZJOI2014」力【FFT】
题目链接 [BZOJ] [洛谷] 题解 首先我们需要对这个式子进行化简,否则对着这么大一坨东西只能暴力... \[F_i=\sum_{j<i} \frac{q_iq_j}{(i-j)^2}-\s ...
- 「BZOJ2733」「洛谷3224」「HNOI2012」永无乡【线段树合并】
题目链接 [洛谷] 题解 很明显是要用线段树合并的. 对于当前的每一个连通块都建立一个权值线段树. 权值线段树处理操作中的\(k\)大的问题. 如果需要合并,那么就线段树暴力合并,时间复杂度是\(nl ...
- 「洛谷3870」「TJOI2009」开关【线段树】
题目链接 [洛谷] 题解 来做一下水题来掩饰ZJOI2019考炸的心情QwQ. 很明显可以线段树. 维护两个值,\(Lazy\)懒标记表示当前区间是否需要翻转,\(s\)表示区间还有多少灯是亮着的. ...
随机推荐
- Win10如何更改C:\Users\下的用户名
详细操作步骤博文原址 : https://blog.csdn.net/wls666/article/details/103334152 但是,改完后会出现报错 这是微软应用商城出现问题 ,每次开机 ...
- Vue系列教程(三)之vue-cli脚手架的使用
一.Vue-cli的环境准备 目的:(1)快速管理依赖 (2)确定项目结构 1.安装node.js Node.js是一个可以让前端运行在服务器上的一个工. 下载:https://nodejs.org/ ...
- .NET Core 利用委托进行动态流程组装
引言 在看.NET Core 源码的管道模型中间件(Middleware)部分,觉得这个流程组装,思路挺好的,于是就分享给大家.本次代码实现就直接我之前写的动态代理实现AOP的基础上直接改了,就不另起 ...
- 原生twig模板引擎详解(安装使用)
最近在学习SSTI(服务器模板注入),所以在此总结一下 0x00 Twig的介绍 什么是Twig? Twig是一款灵活.快速.安全的PHP模板引擎. Twig的特点? 快速:Twig将模板编译为纯粹的 ...
- 【PTA】5-1 输入一个正整数n,再输入n个学生的姓名和百分制成绩,将其转换为两级制成绩后输出。
5-1 输入一个正整数n,再输入n个学生的姓名和百分制成绩,将其转换为两级制成绩后输出.要求定义和调用函数set_grade(stu, n),其功能是根据结构数组stu中存放的学生的百分制成绩scor ...
- 使用Redis分布式锁控制请求串行处理
1.需求背景 在一些写接口的场景下,由于一些网络因素导致用户的表单重复提交,就会在相邻很短的时间内,发出多个数据一样的请求.后台接口的幂等性保证一般都是先检查数据的状态,然后决定是否进行执行写入操作, ...
- 使用Hot Chocolate和.NET 6构建GraphQL应用(1)——GraphQL及示例项目介绍
系列导航 使用Hot Chocolate和.NET 6构建GraphQL应用文章索引 前言 这篇文章是这个系列的第一篇,我们会简单地讨论一下GraphQL,然后介绍一下这个系列将会使用的示例项目. 关 ...
- CMake语法—内置变量
目录 CMake语法-内置变量 1 CMake变量分类 1.1 普通变量 1.2 缓存变量 1.3 环境变量 1.4 内置变量 2 CMake内置变量分类 2.1 提供信息的变量 2.2 改变行为的变 ...
- 使用Hot Chocolate和.NET 6构建GraphQL应用(2) —— 实体相关功能实现
系列导航 使用Hot Chocolate和.NET 6构建GraphQL应用文章索引 需求 在本文中,我们将会准备好用于实现GraphQL接口所依赖的底层数据,为下一篇文章具体实现GraphQL接口做 ...
- vivo数据库与存储平台的建设和探索
本文根据Xiao Bo老师在"2021 vivo开发者大会"现场演讲内容整理而成.公众号回复[2021VDC]获取互联网技术分会场议题相关资料. 一.数据库与存储平台建设背景 以史 ...