Solution -「SPOJ-VCIRCLES」Area of Circles
\(\mathcal{Description}\)
Link.
求平面上 \(n\) 个圆的并的面积。
\(n\le50\),可能被圆覆盖的横纵坐标区域在 \([-10^4,10^4]\)。
\(\mathcal{Solution}\)
做了那么多计算几何之后写了这道不那么计算几何的计算几何题的题解。
若想直接处理面积,就需要处理圆的各种相交关系,但是仅计算在某个 \(x_0\) 处,被圆的并覆盖的线段长度是很好处理地:每次 \(\mathcal O(n\log n)\) 排序后扫一遍即可。我们记 \(f(x)\) 表示 \(x_0=x\) 时,被圆的并覆盖的线段长度。所以问题转为求 \(\int_{-\infty}^{+\infty}f(x)dx\)。
运用自适应 Simpson 积分,有 Simpson 公式:
\]
其本质是用二次函数 \(g\) 近似地替换一个复杂的函数 \(f\),即设:
\]
利用 \(g(x)\) 化简积分,注意 \(g\) 仅是一种形式,我们的目的使用 \(f\) 的一些点值近似表示原积分。推导:
\]
记 \(h(a,b)=\frac{b-a}6\left(f(a)+4f(\frac{a+b}2)+f(b)\right)\),自适应 Simpson 积分的表达式如下:
\]
其中 \(\approx^*\) 根据题目精度要求等自行判断。若精度不合适,则递归求解提升精确度。
注意自适应 Simpson 积分只能处理平滑函数。例如依照上述算法,\(\int_0^{2\pi}|\sin x|\text dx=0\)(大雾)。
回到本题,结合求 \(\mathcal O(n\log n)\) 求 \(f(x_0)\) 的方法近似求出 \(\int_{-\infty}^{+\infty}f(x)dx\) 即可。复杂度与圆的位置和要求精度有关(aka. 我不知道 qwq)。
\(\mathcal {Code}\)
讲道理若某两块并在 \(x\) 轴上的投影相离应该分开求积分,但那样写我 WA 掉了 qwq。
/* Clearink */
#include <cmath>
#include <cstdio>
#include <vector>
#include <algorithm>
typedef std::pair<double, double> PDD;
const int MAXN = 50;
const double EPS = 1e-9;
int n;
bool ban[MAXN + 5];
inline double sqr ( const double a ) { return a * a; }
inline double dabs ( const double a ) { return a < 0 ? -a : a; }
inline double dmin ( const double a, const double b ) { return a < b ? a : b; }
inline double dmax ( const double a, const double b ) { return a < b ? b : a; }
struct Circle { double x, y, r; } O[MAXN + 5];
inline double func ( const double x ) {
static std::vector<PDD> sec; sec.clear ();
for ( int i = 1; i <= n; ++i ) {
const Circle& C ( O[i] );
if ( dabs ( x - C.x ) < C.r ) {
double yd = sqrt ( sqr ( C.r ) - sqr ( dabs ( C.x - x ) ) );
sec.push_back ( { C.y - yd, C.y + yd } );
}
}
std::sort ( sec.begin (), sec.end () );
double las = -1e9, ret = 0;
for ( PDD s: sec ) {
las = dmax ( las, s.first );
ret += dmax ( 0, s.second - las );
las = dmax ( las, s.second );
}
return ret;
}
inline double scalc ( const double lx, const double rx,
const double fl, const double fm, const double fr ) {
return ( fl + 4 * fm + fr ) / 6 * ( rx - lx );
}
inline double simpson ( const double lx, const double rx,
const double fl, const double fm, const double fr ) {
double mx = 0.5 * ( lx + rx );
double fll = func ( 0.5 * ( lx + mx ) ), frr = func ( 0.5 * ( mx + rx ) );
double s = scalc ( lx, rx, fl, fm, fr );
double sl = scalc ( lx, mx, fl, fll, fm ), sr = scalc ( mx, rx, fm, frr, fr );
if ( dabs ( s - sl - sr ) < EPS ) return sl + sr;
return simpson ( lx, mx, fl, fll, fm ) + simpson ( mx, rx, fm, frr, fr );
}
int main () {
scanf ( "%d", &n );
double mn = 1e9, mx = -1e9;
for ( int i = 1; i <= n; ++i ) {
scanf ( "%lf %lf %lf", &O[i].x, &O[i].y, &O[i].r );
mn = dmin ( mn, O[i].x - O[i].r );
mx = dmax ( mx, O[i].x + O[i].r );
}
printf ( "%.5f\n", simpson ( mn, mx,
func ( mn ), func ( 0.5 * ( mn + mx ) ), func ( mx ) ) );
return 0;
}
Solution -「SPOJ-VCIRCLES」Area of Circles的更多相关文章
- 「SPOJ 3105」Power Modulo Inverted
「SPOJ 3105」Power Modulo Inverted 传送门 题目大意: 求关于 \(x\) 的方程 \[a^x \equiv b \;(\mathrm{mod}\; p) \] 的最小自 ...
- Solution -「ARC 104E」Random LIS
\(\mathcal{Description}\) Link. 给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...
- Solution -「CTS 2019」「洛谷 P5404」氪金手游
\(\mathcal{Description}\) Link. 有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \ ...
- Solution -「BZOJ 3812」主旋律
\(\mathcal{Description}\) Link. 给定含 \(n\) 个点 \(m\) 条边的简单有向图 \(G=(V,E)\),求 \(H=(V,E'\subseteq E)\ ...
- Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\) Link. 在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...
- Solution -「简单 DP」zxy 讲课记实
魔法题位面级乱杀. 「JOISC 2020 Day4」治疗计划 因为是不太聪明的 Joker,我就从头开始理思路了.中途也会说一些和 DP 算法本身有关的杂谈,给自己的冗长题解找借口. 首先,治疗方案 ...
- Solution -「基环树」做题记录
写的大多只是思路,比较简单的细节和证明过程就不放了,有需者自取. 基环树简介 简单说一说基环树吧.由名字扩展可得这是一类以环为基础的树(当然显然它不是树. 通常的表现形式是一棵树再加一条非树边,把图画 ...
- Solution -「WC 2022」秃子酋长
\(\mathscr{Description}\) Link. (It's empty temporarily.) 给定排列 \(\{a_n\}\),\(q\) 次询问,每次给出 \([l,r ...
- Solution -「JSOI 2019」「洛谷 P5334」节日庆典
\(\mathscr{Description}\) Link. 给定字符串 \(S\),求 \(S\) 的每个前缀的最小表示法起始下标(若有多个,取最小的). \(|S|\le3\time ...
随机推荐
- github 创建网络仓库 ,使用git工具将本地文件上传/删除 --- 心得
1.前言 使用 git做项目控制版本工具,当然,使用SVN也可以,但是,git让人感觉更先进一些,与GitHub结合,用起来很方便,服务端由官网控制. 而SVN分客户端和服务端,都是个人控制,因此, ...
- 移动端开发,rem单位妙用,自适应
其实我们都会,但是不会用 大家看到的都是,这样的,这样的. http://www.woshipm.com/ucd/24110.html http://www.w3cplus.com/css3/defi ...
- Keil MDK STM32系列(二) 基于标准外设库SPL的STM32F401开发
Keil MDK STM32系列 Keil MDK STM32系列(一) 基于标准外设库SPL的STM32F103开发 Keil MDK STM32系列(二) 基于标准外设库SPL的STM32F401 ...
- 【C语言】将文本中汉字读入字符数组输出乱码
输出中文字符乱码 今天从文件中将中文读入字符数组后输出发现其中文变成了乱码,,令人头大. 解决办法 将文本编码格式改成ANSI即可. 打开记事本->文件->另存为->更改编码格式-& ...
- Solon 开发,八、注入依赖与初始化
Solon 开发 一.注入或手动获取配置 二.注入或手动获取Bean 三.构建一个Bean的三种方式 四.Bean 扫描的三种方式 五.切面与环绕拦截 六.提取Bean的函数进行定制开发 七.自定义注 ...
- 01-JS中字面量与变量
01-JS中字面量与变量 一.直接量(字面量) 字面量:英语叫做literals,也做直接量,看见什么,它就是什么. (一)数字的字面量 数字的字面量,就是这个数字自己,并不需要任何的符号来界定这个数 ...
- 理解ASP.NET Core - 基于Cookie的身份认证(Authentication)
注:本文隶属于<理解ASP.NET Core>系列文章,请查看置顶博客或点击此处查看全文目录 概述 通常,身份认证(Authentication)和授权(Authorization)都会放 ...
- Web安全攻防(一)XSS注入和CSRF
跨站脚本攻击(XSS) XSS(Cross Site Scripting),为不和层叠样式表CSS混淆,故将跨站脚本攻击缩写为XSS. 攻击原理: 恶意攻击者往Web页面里插入恶意Script代码,当 ...
- [FatFs 学习] SD卡总结-SPI模式
SD卡为移动设备提供了安全的,大容量存储解决方法.它本身可以通过两种总线模式和MCU进行数据传输,一种是称为SD BUS的4位串行数据模式,另一种就是大家熟知的4线SPI Bus模式.一些廉价,低端的 ...
- 【刷题-PAT】A1108 Finding Average (20 分)
1108 Finding Average (20 分) The basic task is simple: given N real numbers, you are supposed to calc ...