地下迷宫
Time Limit:1000MS  Memory Limit:32768K

Description:

由于山体滑坡,DK被困在了地下蜘蛛王国迷宫。为了抢在DH之前来到TFT,DK必须尽快走出此迷宫。此迷宫仅有一个出口,而由于大BOSS的力量减弱影响到了DK,使DK的记忆力严重下降,他甚至无法记得他上一步做了什么。所以他只能每次等概率随机的选取一个方向走。当然他不会选取周围有障碍的地方走。如DK周围只有两处空地,则每个都有1/2的概率。现在要求他平均要走多少步可以走出此迷宫。

Input:

先是一行两个整数N, M(1<=N, M<=10)表示迷宫为N*M大小,然后是N行,每行M个字符,'.'表示是空地,'E’表示出口,'D’表示DK,'X’表示障碍。

Output:

如果DK无法走出或要超过1000000步才能走出,输出tragedy!,否则输出一个实数表示平均情况下DK要走几步可以走出迷宫,四舍五入到小数点后两位。

Sample Input:

1 2
ED
3 3
D.X
.X.
X.E

Sample Output:

1.00
tragedy!

Source:

DK

思路:
首先对地图节点重新标号。假设E[i]表示DK从i点开始走出迷宫的期望值。
那么E[i]=(E[a1]+E[a2]+E[a3]+...+E[an])/n+1,其中a1...an是i的相邻节点。
那么对于每一个DK可达的节点来说,都可以为它建立这样的一个方程。现
在假设DK可达的点有N个,那么我们最终将会得到N元一次方程组。方程成
环所以利用高斯消元解出E[No[S]]。其中S是DK的起点,No[S]是重标号后的
起点这里要重点注意的是,我们联立方程的时候,一定要注意DK可达这个条
件,不然就会导致无解的情况。貌似zjutoj崩了。不能交题了。代码仅供参考。

详细见代码:
#include <iostream>
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<queue>
using namespace std;
const int maxn=15;
const double eps=1e-9;
char maze[maxn][maxn];//记录地图
int pp[maxn][maxn];//重编号
int dx[4]={0,0,-1,1};
int dy[4]={1,-1,0,0};
double mat[maxn][maxn];//记录矩阵
int n,m,cnt,ptr;
struct node
{
int x,y;
node(int xx,int yy)
{
x=xx;
y=yy;
}
node(){}
} st,ed,t;
queue<node> q; bool isok(int x,int y)//判断是否越界
{
return x>=0&&x<n&&y>=0&&y>=0&&y<m&&maze[x][y]!='X';
}
void bfs()//宽搜。记录可到达点
{
int nx,ny,i;
while(!q.empty())
q.pop();
cnt=0;
nx=st.x;
ny=st.y;
pp[nx][ny]=cnt++;
q.push(st);
while(!q.empty())
{
t=q.front();
q.pop();
for(i=0;i<4;i++)
{
nx=t.x+dx[i];
ny=t.y+dy[i];
if(isok(nx,ny)&&pp[nx][ny]==-1)
{
q.push(node(nx,ny));
pp[nx][ny]=cnt++;//对可到达点编号
}
}
}
}
bool guass()//高斯消元
{
int row,i,j,id;
double maxx,var;
for(row=0;row<cnt;row++)//遍历行。重点在mat[row][row]先找此处最大系数。然后把以下方程的对应未知数消去
{
maxx=fabs(mat[row][row]);
id=row;//id记录位置
for(i=row+1;i<cnt;i++)
{
if(fabs(mat[i][row])>maxx)
{
maxx=fabs(mat[i][row]);//注意是绝对值大
id=i;
}
}
if(maxx<eps)
return false;
if(id!=row)//如果就是当前处理行就不用交换
{
for(i=row;i<=cnt;i++)//交换最大行和当前行
swap(mat[row][i],mat[id][i]);
}
for(i=row+1;i<cnt;i++)//遍历行。所以<cnt.把当前处理行以下的mat[row][row]变量消去。
{
if(fabs(mat[i][row])<eps)//本来就为0就不用处理了
continue;
var=mat[i][row]/mat[row][row];
for(j=row;j<=cnt;j++)//包括扩展矩阵所以c<=cnt。
mat[i][j]-=mat[row][j]*var;
}
}
for(i=cnt-1;i>=0;i--)//从最后一个系数开始
{
for(j=i+1;j<cnt;j++)
mat[i][cnt]-=mat[i][j]*mat[j][j];
mat[i][i]=mat[i][cnt]/mat[i][i];//现在系数矩阵的对角线用于记录答案。
}
return true;
}
int main()
{
int i,j,k,nx,ny,p; while(~scanf("%d%d",&n,&m))
{
for(i=0;i<n;i++)
{
scanf("%s",maze[i]);
for(j=0;j<m;j++)
{
if(maze[i][j]=='D')
st.x=i,st.y=j;
else if(maze[i][j]=='E')
ed.x=i,ed.y=j;
}
}
memset(pp,-1,sizeof pp);
bfs();
if(pp[ed.x][ed.y]==-1)
{
printf("tragedy!\n");
continue;
}
memset(mat,0,sizeof mat);
for(i=0;i<n;i++)
{
for(j=0;j<m;j++)
{
if(pp[i][j]!=-1)//以每个可到达点建立方程组
{
ptr=0;
p=pp[i][j];
for(k=0;k<4;k++)
{
nx=i+dx[k];
ny=j+dy[k];
if(isok(nx,ny))
{
mat[p][pp[nx][ny]]=-1;
ptr++;
}
}
mat[p][p]=ptr;
mat[p][cnt]=ptr;
}
}
}
p=pp[ed.x][ed.y];
memset(mat[p],0,sizeof mat[p]);
mat[p][p]=1;//在终点步数的期望为0.
if(guass())
{
p=pp[st.x][st.y];
if(mat[p][p]<=1000000)
printf("%.2lf\n",mat[p][p]);
else
printf("tragedy!\n");
}
else
printf("tragedy!\n");
}
return 0;
}

ZJUT 1423 地下迷宫(期望DP&高斯消元)的更多相关文章

  1. BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元

    BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元 题意: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机 ...

  2. BZOJ.2707.[SDOI2012]走迷宫(期望 Tarjan 高斯消元)

    题目链接 一个点到达终点的期望步数 \(E_i=\sum_{(i,j)\in G}\frac{E_j+1}{out[i]}\),\(out[i]\)为点\(i\)的出度. 那么对于一个DAG可以直接在 ...

  3. HDU 2262 Where is the canteen 期望dp+高斯消元

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2262 Where is the canteen Time Limit: 10000/5000 MS ...

  4. hdu4418 Time travel 【期望dp + 高斯消元】

    题目链接 BZOJ4418 题解 题意:从一个序列上某一点开始沿一个方向走,走到头返回,每次走的步长各有概率,问走到一点的期望步数,或者无解 我们先将序列倍长形成循环序列,\(n = (N - 1) ...

  5. 【noi2019集训题1】 脑部进食 期望dp+高斯消元

    题目大意:有n个点,m条有向边,每条边上有一个小写字母. 有一个人从1号点开始在这个图上随机游走,游走过程中他会按顺序记录下走过的边上的字符. 如果在某个时刻,他记录下的字符串中,存在一个子序列和S2 ...

  6. LightOJ 1151 Snakes and Ladders 期望dp+高斯消元

    题目传送门 题目大意:10*10的地图,不过可以直接看成1*100的,从1出发,要到达100,每次走的步数用一个大小为6的骰子决定.地图上有很多个通道 A可以直接到B,不过A和B大小不确定   而且 ...

  7. P4457-[BJOI2018]治疗之雨【期望dp,高斯消元】

    正题 题目链接:https://www.luogu.com.cn/problem/P4457 题目大意 开始一个人最大生命值为\(n\),剩余\(hp\)点生命,然后每个时刻如果生命值没有满那么有\( ...

  8. Codeforces.24D.Broken robot(期望DP 高斯消元)

    题目链接 可能这儿的会更易懂一些(表示不想再多写了). 令\(f[i][j]\)表示从\((i,j)\)到达最后一行的期望步数.那么有\(f[n][j]=0\). 若\(m=1\),答案是\(2(n- ...

  9. BZOJ2707: [SDOI2012]走迷宫(期望 tarjan 高斯消元)

    题意 题目链接 Sol 设\(f[i]\)表示从\(i\)走到\(T\)的期望步数 显然有\(f[x] = \sum_{y} \frac{f[y]}{deg[x]} + 1\) 证明可以用全期望公式. ...

随机推荐

  1. elk工作原理

    这个配置文件,是读取nginx日志写入到redis zjtest7-redis:/usr/local/logstash-2.3.4/config# cat logstash_agent.conf in ...

  2. IT第四天 - 运算符、随机数、Math类

    IT第四天 上午 运算符 1.%运算符的应用 2.运算符优先级:小括号 ! 算数运算符 关系运算符 && ||   赋值运算符 3.三元运算符:?表示条件为true的结果,:表示条件为 ...

  3. HDoj-1527-取石子游戏

    取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Subm ...

  4. Cocos2d-x 创建自己定义项目模板

    你是否以前为cocos方便高速开发而兴奋,你是否以前为各种工具的便利开发而感动,但如今的你是否为每次创建一个新的项目都是HelloWorldScene而苦恼? 好吧,事实上我也感觉到了,每次创建一个项 ...

  5. HDU 1969(二分法)

    My birthday is coming up and traditionally I’m serving pie. Not just one pie, no, I have a number N ...

  6. Python 字符、整型、列表字典等操作(二)

    在上次课程中简要的讲述了Python的基础常识,现在来详细的学习一下吧! 一.类和对象 面向过程和面向对象 面向过程:C 面向对象:Java.Python等 类和对象的含义: 类,是对事物的抽象,比如 ...

  7. Week8(10月28日)

    Part I:提问  =========================== 1. Lazy.Eager.Explicit Loading的关键字是什么? 2. 请比较三种加载方式的性能. Part ...

  8. WinXP系统服务详细列表

    windows XP 系统服务“关闭”详细列表,释放N多内存,128也够用了! 在xp系统中,有近90个服务,默认开启了 30多个服务,而事实上我们只需要其中几个就够用了.禁止所有不必要的服务可以为您 ...

  9. c# 数据库编程(利用DataSet 和 DataAdaper对象操作数据库--单表操作)

    一.概述 前面2篇文章,介绍了使用SqlCommand对象利用sql命令来操作数据库. 这篇文章我们来介绍使用c#的DataSet 和 DataAdaper对象操作操作数据库. 先来介绍下这两个对象是 ...

  10. linux下java窗口,正确显示中文

    Tip1 1.在 JAVA_HOME/jre/lib/fonts/ 下建立个目录 fallback 2.在 fallback 里弄个中文字体最简单ln一下就好了 比如: ln -s /usr/shar ...