poj3356 AGTC
Description
Let x and y be two strings over some finite alphabet A. We would like to transform x into y allowing only operations given below:
- Deletion: a letter in x is missing in y at a corresponding position.
- Insertion: a letter in y is missing in x at a corresponding position.
- Change: letters at corresponding positions are distinct
Certainly, we would like to minimize the number of all possible operations.
Illustration
- A G T A A G T * A G G C
| | | | | | |
A G T * C * T G A C G CDeletion: * in the bottom line
Insertion: * in the top line
Change: when the letters at the top and bottom are distinct
This tells us that to transform x = AGTCTGACGC into y = AGTAAGTAGGC we would be required to perform 5 operations (2 changes, 2 deletions and 1 insertion). If we want to minimize the number operations, we should do it like
- A G T A A G T A G G C
| | | | | | |
A G T C T G * A C G C
and 4 moves would be required (3 changes and 1 deletion).
In this problem we would always consider strings x and y to be fixed, such that the number of letters in x is m and the number of letters in y is nwhere n ≥ m.
Assign 1 as the cost of an operation performed. Otherwise, assign 0 if there is no operation performed.
Write a program that would minimize the number of possible operations to transform any string x into a string y.
Input
The input consists of the strings x and y prefixed by their respective lengths, which are within 1000.
Output
An integer representing the minimum number of possible operations to transform any string x into a string y.
Sample Input
- 10 AGTCTGACGC
- 11 AGTAAGTAGGC
Sample Output
- 4
题意: 把一个字符串经过最少操作步数转为另一个字符串 ——------操作可以是删除插入修改一个字符
dp[i][j]表示A[0-i] B[0-j]相等的最少步数
我们先来对B进行操作
删除的B[j] : d[i][j]=d[i][j-1]+1;
在B[j]后面插入一个: d[i][j]=d[i-1][j]+1;
删除一个数 if(B[j]==A[i]) d[i][j]=d[i-1][j-1];
else d[i][j]=d[i-1][j-1]+1;
求以上三种方法的最大d[i][j];
同理对A[i]操作也方程也是不变的
- #include<iostream>
- #include<cstring>
- #include<string>
- using namespace std;
- int dp[][];
- string a,b;
- int n,m;
- int Dp(int i,int j){
- if(dp[i][j]==-){
- int t1=Dp(i-,j)+;
- int t2=Dp(i,j-)+;
- int t3=Dp(i-,j-)+(a[i-]==b[j-]?:);
- dp[i][j]=min(min(t1,t2),t3);
- }
- return dp[i][j];
- }
- int main(){
- while(cin>>n>>a>>m>>b){
- memset(dp,-,sizeof(dp));
- int t=max(n,m);
- for(int i=;i<=t;i++){
- dp[][i]=i;
- dp[i][]=i;
- }
- cout<<Dp(n,m)<<endl;
- }
- return ;
- }
poj3356 AGTC的更多相关文章
- POJ3356 – AGTC(区间DP&&编辑距离)
题目大意 给定字符串X和Y,可以对字符串进行一下三种操作: 1.删除一个字符 2.插入一个字符 3.替换一个字符 每个操作代价是1,问运用以上三种操作把X变为Y所需的最小步数是多少? 题解 定义dp[ ...
- POJ 3356 AGTC(最小编辑距离)
POJ 3356 AGTC(最小编辑距离) http://poj.org/problem?id=3356 题意: 给出两个字符串x 与 y,当中x的长度为n,y的长度为m,而且m>=n.然后y能 ...
- POJ 3356.AGTC
问题简述: 输入两个序列x和y,分别执行下列三个步骤,将序列x转化为y (1)插入:(2)删除:(3)替换: 要求输出最小操作数. 原题链接:http://poj.org/problem?id=335 ...
- POJ 3356 AGTC(最长公共子)
AGTC Description Let x and y be two strings over some finite alphabet A. We would like to transform ...
- POJ 3356 AGTC(DP-最小编辑距离)
Description Let x and y be two strings over some finite alphabet A. We would like to transform x int ...
- poj3356 dp
//Accepted 4100 KB 0 ms //类似poj1080 //dp[i][j]表示s1用前i个,s2用前j个的最少匹配步数 //dp[i][j]=min(dp[i][j-1]+1,dp[ ...
- poj 3356 AGTC(线性dp)
题目链接:http://poj.org/problem?id=3356 思路分析:题目为经典的编辑距离问题,其实质为动态规划问题: 编辑距离问题定义:给定一个字符串source,可以对其进行复制,替换 ...
- POJ 3356 AGTC(DP求字符串编辑距离)
给出两个长度小于1000的字符串,有三种操作,插入一个字符,删除一个字符,替换一个字符. 问A变成B所需的最少操作数(即编辑距离) 考虑DP,可以用反证法证明依次从头到尾对A,B进行匹配是不会影响答案 ...
- Match:DNA repair(POJ 3691)
基因修复 题目大意:给定一些坏串,再给你一个字符串,要你修复这个字符串(AGTC随便换),使之不含任何坏串,求修复所需要的最小步数. 这一题也是和之前的那个1625的思想是一样的,通过特殊的trie树 ...
随机推荐
- 解题报告 HDU1087 Super Jumping! Jumping! Jumping!
Super Jumping! Jumping! Jumping! Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 ...
- FMDB的基本应用
FMDB简介 iOS中原生的SQLite API在进行数据存储的时候,需要使用C语言中的函数,操作比较频繁.于是,就出现了一系列将AQLite API进行封装的库,例如FMDB.PlausibleDa ...
- LoadImage()的使用
系统中的定义是: WINUSERAPIHANDLEWINAPILoadImageA( HINSTANCE, LPCSTR, UINT, int, int, UINT ...
- Java数据类型BooleanDemo
- android面试题之一
在接下来的一段时间,我将收集一些常见面试题,综合网上资料加自己测试与理解,将其总结出来和大家分享,里面难免有一些问题,希望大家提出宝贵意见以便及时更正. 一.Activity.Service.Broa ...
- iTextSharp.text的一个使用,主要用来创建PDF
using iTextSharp.text; //创建一个字体来使用和编码格式 BaseFont baseFont = BaseFont.CreateFont("C:\\Windows\\F ...
- ActionBar开启Overlay Mode(覆盖模式)
以下内容参考自Android官网http://developer.android.com/training/basics/actionbar/overlaying.html#EnableOverlay ...
- tomcat环境变量的配置(网上摘,全部验证通过)
tomcat环境变量的配置 1.===> 进入bin目录下,双击startup.bat看是否报错.一般肯定会报. 2.===> 右键我的电脑===>高级===>环境变量 ...
- [原]详解如何将cocos2dx项目编译到Android平台上的(方式一:Cywin+NDK)
链接地址:http://m.blog.csdn.net/blog/yhc13429826359/29357815 2014-6-8阅读578 评论0 前言:cocos2dx作为一个开源的移动2D游戏框 ...
- Minimum Window Substring @LeetCode
不好做的一道题,发现String Algorithm可以出很多很难的题,特别是多指针,DP,数学推导的题.参考了许多资料: http://leetcode.com/2010/11/finding-mi ...