快速傅里叶变化有不同的应用场景,hdu4609就比较有意思。题目要求是给n个线段,随机从中选取三个,组成三角形的概率。

初始实在没发现这个怎么和FFT联系起来,后来看了下别人的题解才突然想起来:组合计数问题可以用多项式的卷积来解决。于是将给的数据进行卷积相乘,利用FFT即可求出三角形任意两条线段组合的可能数目。

然后遍历初始数据,将其作为最长边(这里一开始也没想明白,其实就是只要最长边大于短边之和,其他两个不等式也自然可以满足)。那么理论上说比它长的所有两边组合可能都可以。当然在这里要考虑三种特殊情况:(即在两边组合数目中减去这些情况)

1.这两个边有可能一个边比最长边长,一个边小于最长边

2.其中一个边就是要选的这个边

3.两个边其实都比最长边长,这种情况要除以二

PS:G++使用的是longlong类型,C++是_int64,好久没写忘记了。

longlong在代码中间乘的运算也要加上,否则还是会出错。

#include <iostream>
#include <cmath>
#include <algorithm> //spell!
#include <string.h>
#define MAXN 400040
#define PI acos(-1.0)
using namespace std; struct complex
{
double r,i;
complex(double real=0.0,double image=0.0)
{
r=real;
i=image;
}
//以下为三种虚数运算的定义
complex operator+(const complex o)
{
return complex(r+o.r,i+o.i);
}
complex operator-(const complex o)
{
return complex(r-o.r,i-o.i);
}
complex operator*(const complex o)
{
return complex(r*o.r-i*o.i,r*o.i+i*o.r);
}
}x1[MAXN]; void bitrev(complex *y,int l) //二进制平摊反转置换 O(logn)
{
register int i,j,k;
for(i=,j=l/;i<l-;i++)
{
if(i<j) swap(y[i],y[j]); //交换互为下标反转的元素
//i<j保证只交换一次
k=l/;
while(j>=k) //由最高位检索,遇1变0,遇0变1,跳出
{
j-=k;
k/=;
}
if(j<k) j+=k;
}
}
void fft(complex *in,int n,int flag)
{
int i,j,k;
complex u,t;
bitrev(in,n);
for(int i=;i<=n;i=i*)
{
complex wn(cos((*PI*flag)/i),sin((*PI*flag)/i));//初始化单位复根
for(j=;j<n;j=j+i)
{
complex w(,);
for(k=j;k<j+i/;k++)
{
u=in[k];
t=w*in[k+i/];
in[k]=u+t;
in[k+i/]=u-t;
w=w*wn;
}
}
}
if(flag==-)
for(int i=;i<n;i++)
in[i].r=in[i].r/n;
} int a[];
long long res[MAXN];
long long sum[MAXN];
long long num[MAXN];
int main() {
int T;
scanf("%d",&T);
while(T--)
{
int n,i;
scanf("%d",&n);
memset(res,,sizeof(res));
memset(sum,,sizeof(sum));
memset(num,,sizeof(num));
for(int j=;j<n;j++)
{
scanf("%d",&a[j]);
num[a[j]]++;
}
sort(a,a+n);
for(i = ;i <=a[n-];i++)
{
x1[i].r=num[i];
x1[i].i=;
}
int expandn=;
while(expandn<*(a[n-]+))expandn=expandn*; for(i = a[n-]+;i<expandn;i++)
{
x1[i].r=;
x1[i].i=;
}
fft(x1,expandn,);
for(i=;i<expandn;i++)
x1[i]=x1[i]*x1[i];
fft(x1,expandn,-);
for(i=;i<expandn;i++)
{
res[i]=(long long)(x1[i].r+0.5);
}
//去除本身
for(i=;i<n;i++)
res[a[i]+a[i]]--;
//变为组合
for(i=;i<expandn;i++)
res[i]=res[i]/;
//求出两边之和为i的所有可能
//expandn=(a[n-1]+1)*2;
sum[]=res[];
for(i=;i<expandn;i++)
sum[i]=res[i]+sum[i-];
long long ans=;
for(i=;i<n;i++)
{
ans+=sum[expandn-]-sum[a[i]];//比长度为a[i]大的所有可能
//去除一个大于a[i],一个小于a[i]
ans=ans-(long long)(n--i)*i;
//去除一个取自己
ans=ans-(n-);
//去除取两个都大
ans=ans-(long long)(n--i)*(n--i)/;
}
long long all = (long long)n*(n-)*(n-)/;
printf("%.7lf\n",(double)ans/all);
}
}

hdu 4609

快速傅里叶变换应用之二 hdu 4609 3-idiots的更多相关文章

  1. 基于python的快速傅里叶变换FFT(二)

    基于python的快速傅里叶变换FFT(二)本文在上一篇博客的基础上进一步探究正弦函数及其FFT变换. 知识点  FFT变换,其实就是快速离散傅里叶变换,傅立叶变换是数字信号处理领域一种很重要的算法. ...

  2. 解题:HDU 4609 Three Idiots

    题面 要求组合的方法显然我们需要对桶卷积,即设$F(x)=\sum\limits_{i=1}^{maxx}x^{cnt[i]}$,然后我们初步的先把$F^2(x)$卷出来,表示选两条边.然后我们发现如 ...

  3. HDU 1402 A * B Problem Plus 快速傅里叶变换 FFT 多项式

    http://acm.hdu.edu.cn/showproblem.php?pid=1402 快速傅里叶变换优化的高精度乘法. https://blog.csdn.net/ggn_2015/artic ...

  4. [学习笔记] 多项式与快速傅里叶变换(FFT)基础

    引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一 ...

  5. 「快速傅里叶变换(FFT)」学习笔记

    FFT即快速傅里叶变换,离散傅里叶变换及其逆变换的快速算法.在OI中用来优化多项式乘法. 本文主要目的是便于自己整理.复习 FFT的算法思路 已知两个多项式的系数表达式,要求其卷积的系数表达式. 先将 ...

  6. 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】

    原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...

  7. 快速傅里叶变换(FFT)

    扯 去北京学习的时候才系统的学习了一下卷积,当时整理了这个笔记的大部分.后来就一直放着忘了写完.直到今天都腊月二十八了,才想起来还有个FFT的笔记没整完呢.整理完这个我就假装今年的任务全都over了吧 ...

  8. 研究傅里叶变换的一本好书<<快速傅里叶变换及其C程序>>

    快速傅里叶变换及其C程序 <快速傅里叶变换及其C程序>是中国科学技术大学出版社出版的.本书系统地介绍了傅里叶变换的理论和技术,内容包括傅里叶变换(FT)的定义.存在条件及其性质,离散傅里叶 ...

  9. 快速傅里叶变换(FFT)学习笔记(未完待续)

    目录 参考资料 FFT 吹水 例题 普通做法 更高大尚的做法 定义与一部分性质 系数表达式 点值表达式 点值相乘??? 卷积 复数 单位根 DFT IDFT 蝴蝶迭代优化 单位根求法 实现.细节与小优 ...

随机推荐

  1. pomelo

    简介 Pomelo 是基于 Node.js 的高性能.分布式游戏服务器框架.它包括基础的开发框架和相关的扩展组件(库和工具包),可以帮助你省去游戏开发枯燥中的重复劳动和底层逻辑的开发.Pomelo 不 ...

  2. Python学习入门基础教程(learning Python)--2.2.1 Python下的变量解析

    前文提及过变量代表内存里的某个数据,这个说法有根据么? 这里我们介绍一个python内建(built-in)函数id.我们先看看id函数的帮助文档吧.在python查某个函数的帮助文档很简单,只用he ...

  3. openstack之网络基础

    L1:物理层L2:数据链路层,基于mac地址的通信,通过交换机连接:对等传输,即交换机上的一个主机发一个包,连接在该交换机上的所有机器都能收到:L3:网络层,基于ip地址,路由器设备,连接不同网段,进 ...

  4. DevExpress ASP.NET 使用经验谈(3)-XPO对象的使用(使用指定数据连接)

    首先,我们贴出上一节Users类XPO对象的保存代码,直接建立的XPO Session会话,因为没有与我们所期望的数据层建立绑定, 所以程序自动创建了一个Access数据库,作为默认数据库操作对象来使 ...

  5. linkbutton.js

    jquery.linkbutton.js /** * linkbutton - jQuery EasyUI * * Licensed under the GPL: * http://www.gnu.o ...

  6. [LeetCode]题解(python):008-String to Integer (atoi)

    题目来源: https://leetcode.com/problems/string-to-integer-atoi/ 题意分析: 这道题也是简单题,题目意思是要将字符串转化成int.比如‘123’转 ...

  7. js求指定时间的周一和周日

    /*计算指定时间的的周一和周日 return=>{mondy:Date,sundy:Date} parms:{ date:指定时间,如果不指定则取当前时间 } */ function getWe ...

  8. ASP.NET jQuery 随笔 从DropDownList获取选择的text和value值

    jQuery来获取DropDownList的Text/Value属性值,代码如下 <%@ Page Language="C#" AutoEventWireup="t ...

  9. [Android]Dalvik的BOOTCLASSPATH和dexopt流程

    BOOTCLASSPATH简介1.BOOTCLASSPATH是Android Linux的一个环境变量,可以在adb shell下用$BOOTCLASSPATH看到.2.BOOTCLASSPATH于/ ...

  10. cyq.data开源

    终于等到你:CYQ.Data V5系列 (ORM数据层)最新版本开源了 前言: 不要问我框架为什么从收费授权转到免费开源,人生没有那么多为什么,这些年我开源的东西并不少,虽然这个是最核心的,看淡了就也 ...