快速傅里叶变换应用之二 hdu 4609 3-idiots
快速傅里叶变化有不同的应用场景,hdu4609就比较有意思。题目要求是给n个线段,随机从中选取三个,组成三角形的概率。
初始实在没发现这个怎么和FFT联系起来,后来看了下别人的题解才突然想起来:组合计数问题可以用多项式的卷积来解决。于是将给的数据进行卷积相乘,利用FFT即可求出三角形任意两条线段组合的可能数目。
然后遍历初始数据,将其作为最长边(这里一开始也没想明白,其实就是只要最长边大于短边之和,其他两个不等式也自然可以满足)。那么理论上说比它长的所有两边组合可能都可以。当然在这里要考虑三种特殊情况:(即在两边组合数目中减去这些情况)
1.这两个边有可能一个边比最长边长,一个边小于最长边
2.其中一个边就是要选的这个边
3.两个边其实都比最长边长,这种情况要除以二
PS:G++使用的是longlong类型,C++是_int64,好久没写忘记了。
longlong在代码中间乘的运算也要加上,否则还是会出错。
#include <iostream>
#include <cmath>
#include <algorithm> //spell!
#include <string.h>
#define MAXN 400040
#define PI acos(-1.0)
using namespace std; struct complex
{
double r,i;
complex(double real=0.0,double image=0.0)
{
r=real;
i=image;
}
//以下为三种虚数运算的定义
complex operator+(const complex o)
{
return complex(r+o.r,i+o.i);
}
complex operator-(const complex o)
{
return complex(r-o.r,i-o.i);
}
complex operator*(const complex o)
{
return complex(r*o.r-i*o.i,r*o.i+i*o.r);
}
}x1[MAXN]; void bitrev(complex *y,int l) //二进制平摊反转置换 O(logn)
{
register int i,j,k;
for(i=,j=l/;i<l-;i++)
{
if(i<j) swap(y[i],y[j]); //交换互为下标反转的元素
//i<j保证只交换一次
k=l/;
while(j>=k) //由最高位检索,遇1变0,遇0变1,跳出
{
j-=k;
k/=;
}
if(j<k) j+=k;
}
}
void fft(complex *in,int n,int flag)
{
int i,j,k;
complex u,t;
bitrev(in,n);
for(int i=;i<=n;i=i*)
{
complex wn(cos((*PI*flag)/i),sin((*PI*flag)/i));//初始化单位复根
for(j=;j<n;j=j+i)
{
complex w(,);
for(k=j;k<j+i/;k++)
{
u=in[k];
t=w*in[k+i/];
in[k]=u+t;
in[k+i/]=u-t;
w=w*wn;
}
}
}
if(flag==-)
for(int i=;i<n;i++)
in[i].r=in[i].r/n;
} int a[];
long long res[MAXN];
long long sum[MAXN];
long long num[MAXN];
int main() {
int T;
scanf("%d",&T);
while(T--)
{
int n,i;
scanf("%d",&n);
memset(res,,sizeof(res));
memset(sum,,sizeof(sum));
memset(num,,sizeof(num));
for(int j=;j<n;j++)
{
scanf("%d",&a[j]);
num[a[j]]++;
}
sort(a,a+n);
for(i = ;i <=a[n-];i++)
{
x1[i].r=num[i];
x1[i].i=;
}
int expandn=;
while(expandn<*(a[n-]+))expandn=expandn*; for(i = a[n-]+;i<expandn;i++)
{
x1[i].r=;
x1[i].i=;
}
fft(x1,expandn,);
for(i=;i<expandn;i++)
x1[i]=x1[i]*x1[i];
fft(x1,expandn,-);
for(i=;i<expandn;i++)
{
res[i]=(long long)(x1[i].r+0.5);
}
//去除本身
for(i=;i<n;i++)
res[a[i]+a[i]]--;
//变为组合
for(i=;i<expandn;i++)
res[i]=res[i]/;
//求出两边之和为i的所有可能
//expandn=(a[n-1]+1)*2;
sum[]=res[];
for(i=;i<expandn;i++)
sum[i]=res[i]+sum[i-];
long long ans=;
for(i=;i<n;i++)
{
ans+=sum[expandn-]-sum[a[i]];//比长度为a[i]大的所有可能
//去除一个大于a[i],一个小于a[i]
ans=ans-(long long)(n--i)*i;
//去除一个取自己
ans=ans-(n-);
//去除取两个都大
ans=ans-(long long)(n--i)*(n--i)/;
}
long long all = (long long)n*(n-)*(n-)/;
printf("%.7lf\n",(double)ans/all);
}
}
hdu 4609
快速傅里叶变换应用之二 hdu 4609 3-idiots的更多相关文章
- 基于python的快速傅里叶变换FFT(二)
基于python的快速傅里叶变换FFT(二)本文在上一篇博客的基础上进一步探究正弦函数及其FFT变换. 知识点 FFT变换,其实就是快速离散傅里叶变换,傅立叶变换是数字信号处理领域一种很重要的算法. ...
- 解题:HDU 4609 Three Idiots
题面 要求组合的方法显然我们需要对桶卷积,即设$F(x)=\sum\limits_{i=1}^{maxx}x^{cnt[i]}$,然后我们初步的先把$F^2(x)$卷出来,表示选两条边.然后我们发现如 ...
- HDU 1402 A * B Problem Plus 快速傅里叶变换 FFT 多项式
http://acm.hdu.edu.cn/showproblem.php?pid=1402 快速傅里叶变换优化的高精度乘法. https://blog.csdn.net/ggn_2015/artic ...
- [学习笔记] 多项式与快速傅里叶变换(FFT)基础
引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一 ...
- 「快速傅里叶变换(FFT)」学习笔记
FFT即快速傅里叶变换,离散傅里叶变换及其逆变换的快速算法.在OI中用来优化多项式乘法. 本文主要目的是便于自己整理.复习 FFT的算法思路 已知两个多项式的系数表达式,要求其卷积的系数表达式. 先将 ...
- 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】
原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...
- 快速傅里叶变换(FFT)
扯 去北京学习的时候才系统的学习了一下卷积,当时整理了这个笔记的大部分.后来就一直放着忘了写完.直到今天都腊月二十八了,才想起来还有个FFT的笔记没整完呢.整理完这个我就假装今年的任务全都over了吧 ...
- 研究傅里叶变换的一本好书<<快速傅里叶变换及其C程序>>
快速傅里叶变换及其C程序 <快速傅里叶变换及其C程序>是中国科学技术大学出版社出版的.本书系统地介绍了傅里叶变换的理论和技术,内容包括傅里叶变换(FT)的定义.存在条件及其性质,离散傅里叶 ...
- 快速傅里叶变换(FFT)学习笔记(未完待续)
目录 参考资料 FFT 吹水 例题 普通做法 更高大尚的做法 定义与一部分性质 系数表达式 点值表达式 点值相乘??? 卷积 复数 单位根 DFT IDFT 蝴蝶迭代优化 单位根求法 实现.细节与小优 ...
随机推荐
- String、StringBuffer、StringBuilder之间区别
String,StringBuffer,StringBuilder 之间区别 在字符串处理中C#提供了String.StringBuffer.StringBuilder三个类.那么他们到底有什么优缺点 ...
- Java之JDOM生成XML和解析
一.生成XML文件 1.JDOM是对Java原始的类进行了封装.让解析XML文件变得很方便 2.创建一个XML文件的根节点: Element root = new Element("HD&q ...
- Codeforces 18C C. Stripe
Codeforces 18C C. Stripe 链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=86640#problem/E 题 ...
- Linux 网络编程: gethostbyname( ), getservbyname( )
前言 最近在学习网络编程,用到几个应该比较常用的网络编程函数,所以写篇博客来记录一下,毕竟学得快忘得也快.国庆节在宿舍写着博客看着各个景点人山人海倒也快哉~ gethostbyname( ) 这个函数 ...
- 【随手记-有空整理】使用PHPMailer和QQ邮箱实现邮件的自动发送
使用PHPMailer和QQ邮箱发送邮件时,在密码一栏里要填写QQ邮箱提供的授权码,而不是邮箱的登录密码 授权码获取可参考:http://service.mail.qq.com/cgi-bin/hel ...
- tf–idf算法解释及其python代码实现(上)
tf–idf算法解释 tf–idf, 是term frequency–inverse document frequency的缩写,它通常用来衡量一个词对在一个语料库中对它所在的文档有多重要,常用在信息 ...
- 405 HTTP method GET is not supported by this URL
孙鑫java web开发详解P285里面提交Get网站弹出提示405 HTTP method GET is not supported by this URL 原因父类doGet()方法未覆盖. 应写 ...
- commons-logging和slf4j都是日志的接口
过上面的图,可以简单的理清关系! commons-logging和slf4j都是日志的接口,供用户使用,而没有提供实现! log4j,logback等等才是日志的真正实现. 当我们调用接口时,接口的工 ...
- Windows Azure 社区新闻综述(#77 版)
欢迎查看最新版本的每周综述,其中包含有关云计算和 Windows Azure 的社区推动新闻.内容和对话.以下是本周的亮点. 文章.视频和博客文章 · 文章: Windows Azure 表存储简 ...
- vs提示“当前不会命中断点,源代码与原始版本不同”的一种解决办法
将出问题的cpp文件用notepad打开,另存为‘unicode’类型,覆盖源文件即可